Spaces:
Running
Running
File size: 11,792 Bytes
e0e93c4 2d9906b e0e93c4 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 e0e93c4 73d3fc4 e0e93c4 73d3fc4 e0e93c4 73d3fc4 e0e93c4 73d3fc4 2d9906b e0e93c4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 e0e93c4 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 2d9906b 73d3fc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import gradio as gr
import pandas as pd
text = "<h1 style='text-align: center; color: blue; font-size: 30px;'>TCO Comparison Calculator"
text1 = "<h1 style='text-align: center; color: blue; font-size: 20px;'>First solution"
text2 = "<h1 style='text-align: center; color: blue; font-size: 20px;'>Second solution"
text3 = "<h1 style='text-align: center; color: blue; font-size: 25px;'>Comparison"
text4 = "<h1 style='text-align: center; color: blue; font-size: 25px;'>Results"
diy_value = 0
saas_value = 0
def calculate_tco(model_choice, vm_rental_choice, out_diy):
VM_cost_per_hour=3.6730 #at Azure for the basic pay as you go option
maxed_out = 0.8 #percentage of time the VM is maxed out
used = 0.5 #percentage of time the VM is used
tokens_per_request = 64
if model_choice == "Llama-2-7B":
tokens_per_second=694.38
elif model_choice == "Llama-2-13B":
tokens_per_second=1000
elif model_choice == "Llama-2-70B":
tokens_per_second=10000
if vm_rental_choice == "pay as you go":
reduction = 0
elif vm_rental_choice == "1 year reserved":
reduction = 0.34
elif vm_rental_choice == "3 years reserved":
reduction = 0.62
homemade_cost_per_token = VM_cost_per_hour * (1 - reduction) / (tokens_per_second * 3600 * maxed_out * used)
homemade_cost_per_request = tokens_per_request * homemade_cost_per_token
out_diy = homemade_cost_per_token
return out_diy
def calculate_tco_2(model_provider, context, out_saas):
tokens_per_request = 64
if model_provider == "OpenAI":
if context == "4K context":
saas_cost_per_token = 0.00035
saas_cost_per_request = saas_cost_per_token * tokens_per_request
elif context == "16K context" :
saas_cost_per_token = 0.0007
saas_cost_per_request = saas_cost_per_token * tokens_per_request
out_saas = saas_cost_per_token
return out_saas
def extract_cost_from_text(text):
try:
cost = float(text)
return cost
except ValueError as e:
raise ValueError("Invalid cost text format")
def compare(cost_text1, cost_text2):
try:
# Extract the costs from the input strings
cost1 = extract_cost_from_text(cost_text1)
cost2 = extract_cost_from_text(cost_text2)
r = cost1 / cost2
if r < 1:
comparison_result = f"First solution is cheaper, with a ratio of {r:.2f}."
elif r > 1:
comparison_result = f"Second solution is cheaper, with a ratio of {r:.2f}."
else:
comparison_result = "Both solutions will cost the same."
return comparison_result
except ValueError as e:
return f"Error: {str(e)}"
def update_plot(diy_value, saas_value):
data = pd.DataFrame(
{
"Solution": ["Home-made", "SaaS"],
"Cost/token ($)": [diy_value, saas_value],
}
)
return gr.BarPlot.update(data, x="Solution", y="Cost/token ($)")
description=f"""
<p>In this demo application, we help you compare different solutions for your AI incorporation plans, such as open-source or SaaS.</p>
<p>First, you'll have to choose the two solutions you'd like to compare. Then, follow the instructions to select your configurations for each solution and we will compute the cost/request accordingly to them. Eventually, you can compare both solutions to evaluate which one best suits your needs, in the short or long term.</p>
"""
description1=f"""
<p>This interface provides you with the cost per request you get using the open-source solution, based on the model you choose to use and how long you're planning to use it.</p>
<p>The selected prices for a Virtual Machine rental come from Azure's VM rental plans, which can offer reductions for long-term reserved usage.</p>
<p>To compute this cost per requets, some adjustments were chosen: the VM is an A100 40GB, supposedly maxed out at 80% and utilized 50% of the time in a full day. Plus, the number of tokens per request was set to 64.</p>
<p>To see the formula used to compute the cost/request, check the box just below!</p>
"""
description2=f"""
<p>This interface provides you with the cost per request resulting from the AI model provider you choose and the number of tokens you select for context, which the model will take into account when processing input texts.</p>
<p>To compute this cost per request, some adjustments were chosen: the number of tokens per request was set to 64.</p>
<p>To see the formula used to compute the cost/request, check the box just below!</p>
"""
description3=f"""
<p>This interface compares the cost per request for the two solutions you selected and gives you an insight of whether a solution is more valuable in the long term.</p>
"""
models = ["Llama-2-7B", "Llama-2-13B", "Llama-2-70B"]
vm_rental_choice = ["pay as you go", "1 year reserved", "3 years reserved"]
model_provider = ["OpenAI"]
context = ["4K context", "16K context"]
error_box = gr.Textbox(label="Error", visible=False)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(value=text)
gr.Markdown(value=description)
out_diy = gr.State(value=0)
out_saas = gr.State(value=0)
out_diy2 = gr.State(value=0)
out_saas2 = gr.State(value=0)
with gr.Row():
with gr.Column():
solution_selection = gr.Dropdown(["SaaS", "Open-source"], label="Select a Solution")
with gr.Row(visible=False) as title_column:
gr.Markdown(value=text1)
with gr.Row(visible=False) as text_diy_column:
gr.Markdown(description1)
with gr.Row(visible=False) as input_diy_column:
model_inp = gr.Dropdown(models, label="Select an AI Model")
rental_plan_inp = gr.Dropdown(vm_rental_choice, label="Select a VM Rental Plan")
rental_plan_inp.change(fn=calculate_tco, inputs=[model_inp, rental_plan_inp, out_diy], outputs=out_diy)
with gr.Row(visible=False) as text_saas_column:
gr.Markdown(description2)
with gr.Row(visible=False) as input_saas_column:
model_provider_inp = gr.Dropdown(model_provider, label="Model Provider")
context_inp = gr.Dropdown(context, label="Context")
context_inp.change(fn=calculate_tco_2, inputs=[model_provider_inp, context_inp, out_saas], outputs=out_saas)
def submit(solution_selection):
if solution_selection == "Open-source":
return {
title_column: gr.update(visible=True),
text_diy_column: gr.update(visible=True),
input_diy_column: gr.update(visible=True),
text_saas_column: gr.update(visible=False),
input_saas_column: gr.update(visible=False),
}
else:
return {
text_diy_column: gr.update(visible=False),
input_diy_column: gr.update(visible=False),
title_column: gr.update(visible=True),
text_saas_column: gr.update(visible=True),
input_saas_column: gr.update(visible=True),
}
solution_selection.change(
submit,
solution_selection,
[out_saas, text_diy_column, title_column, text_saas_column, model_inp, rental_plan_inp, model_provider_inp, context_inp, input_diy_column, input_saas_column],
)
# gr.Divider(style="vertical", thickness=2, color="blue")
with gr.Column():
solution_selection2 = gr.Dropdown(["SaaS", "Open-source"], label="Select a Solution")
with gr.Row(visible=False) as title_column2:
gr.Markdown(value=text2)
with gr.Row(visible=False) as text_diy_column2:
gr.Markdown(description1)
with gr.Row(visible=False) as input_diy_column2:
model_inp2 = gr.Dropdown(models, label="Select an AI Model")
rental_plan_inp2 = gr.Dropdown(vm_rental_choice, label="Select a VM Rental Plan")
rental_plan_inp2.change(fn=calculate_tco, inputs=[model_inp2, rental_plan_inp2, out_diy2], outputs=out_diy2)
with gr.Row(visible=False) as text_saas_column2:
gr.Markdown(description2)
with gr.Row(visible=False) as input_saas_column2:
model_provider_inp2 = gr.Dropdown(['OpenAI'], label="Model Provider")
context_inp2 = gr.Dropdown(['4K context', '16K context'], label="Context")
context_inp2.change(fn=calculate_tco_2, inputs=[model_provider_inp2, context_inp2, out_saas2], outputs=out_saas2)
def submit2(solution_selection2):
if solution_selection2 == "Open-source":
return {
title_column2: gr.update(visible=True),
text_diy_column2: gr.update(visible=True),
input_diy_column2: gr.update(visible=True),
text_saas_column2: gr.update(visible=False),
input_saas_column2: gr.update(visible=False),
}
else:
return {
text_diy_column2: gr.update(visible=False),
input_diy_column2: gr.update(visible=False),
title_column2: gr.update(visible=True),
text_saas_column2: gr.update(visible=True),
input_saas_column2: gr.update(visible=True),
}
solution_selection2.change(
submit2,
solution_selection2,
[out_diy2, out_saas2, title_column2, text_diy_column2, text_saas_column2, model_inp2, rental_plan_inp2, model_provider_inp2, context_inp2, input_diy_column2, input_saas_column2],
)
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(text3)
with gr.Row():
plot = gr.BarPlot(title="Comparison", x_title="Solution", y_title="Cost/token ($)", interactive=True, width=500)
if solution_selection=="Open-source":
context_inp2.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
model_provider_inp2.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
rental_plan_inp.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
model_inp.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
else:
rental_plan_inp2.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
context_inp.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
model_provider_inp.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
model_inp2.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
demo.launch() |