File size: 11,792 Bytes
e0e93c4
2d9906b
e0e93c4
73d3fc4
 
 
 
2d9906b
73d3fc4
2d9906b
 
 
 
73d3fc4
 
 
e0e93c4
 
 
 
 
 
 
 
 
 
 
73d3fc4
e0e93c4
 
73d3fc4
e0e93c4
 
73d3fc4
e0e93c4
 
73d3fc4
 
2d9906b
 
e0e93c4
2d9906b
73d3fc4
 
 
 
 
 
 
 
 
2d9906b
 
73d3fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9906b
 
 
 
 
 
 
 
 
73d3fc4
 
2d9906b
73d3fc4
 
2d9906b
73d3fc4
2d9906b
73d3fc4
 
 
2d9906b
 
73d3fc4
 
 
2d9906b
73d3fc4
 
e0e93c4
73d3fc4
 
 
 
 
 
 
 
 
2d9906b
 
 
 
 
73d3fc4
2d9906b
73d3fc4
2d9906b
73d3fc4
 
 
 
 
 
 
 
2d9906b
 
 
73d3fc4
 
 
 
 
 
 
2d9906b
 
73d3fc4
2d9906b
73d3fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9906b
 
73d3fc4
 
2d9906b
 
73d3fc4
 
 
2d9906b
73d3fc4
2d9906b
73d3fc4
 
 
 
 
 
 
 
2d9906b
 
 
 
73d3fc4
 
 
 
 
 
2d9906b
73d3fc4
2d9906b
 
73d3fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9906b
 
 
 
 
73d3fc4
2d9906b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73d3fc4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
import pandas as pd

text = "<h1 style='text-align: center; color: blue; font-size: 30px;'>TCO Comparison Calculator"
text1 = "<h1 style='text-align: center; color: blue; font-size: 20px;'>First solution"
text2 = "<h1 style='text-align: center; color: blue; font-size: 20px;'>Second solution"
text3 = "<h1 style='text-align: center; color: blue; font-size: 25px;'>Comparison"
text4 = "<h1 style='text-align: center; color: blue; font-size: 25px;'>Results"

diy_value = 0
saas_value = 0

def calculate_tco(model_choice, vm_rental_choice, out_diy):
    VM_cost_per_hour=3.6730 #at Azure for the basic pay as you go option
    maxed_out = 0.8 #percentage of time the VM is maxed out
    used = 0.5 #percentage of time the VM is used 
    tokens_per_request = 64
    
    if model_choice == "Llama-2-7B":
        tokens_per_second=694.38
        
    elif model_choice == "Llama-2-13B":
        tokens_per_second=1000
    
    elif model_choice == "Llama-2-70B":
        tokens_per_second=10000
    
    if vm_rental_choice == "pay as you go":
        reduction = 0
    
    elif vm_rental_choice == "1 year reserved":
        reduction = 0.34
    
    elif vm_rental_choice == "3 years reserved":
        reduction = 0.62
        
    homemade_cost_per_token = VM_cost_per_hour * (1 - reduction) / (tokens_per_second * 3600 * maxed_out * used)
    homemade_cost_per_request = tokens_per_request * homemade_cost_per_token
    out_diy = homemade_cost_per_token
    return out_diy

def calculate_tco_2(model_provider, context, out_saas):
    tokens_per_request = 64
        
    if model_provider == "OpenAI":
        if context == "4K context":
            saas_cost_per_token = 0.00035
            saas_cost_per_request = saas_cost_per_token * tokens_per_request
        elif context == "16K context" :
            saas_cost_per_token = 0.0007
            saas_cost_per_request = saas_cost_per_token * tokens_per_request
    out_saas = saas_cost_per_token
    return out_saas

def extract_cost_from_text(text):
    try:
        cost = float(text)
        return cost
    except ValueError as e:
        raise ValueError("Invalid cost text format")
    
def compare(cost_text1, cost_text2):
    try:
        # Extract the costs from the input strings
        cost1 = extract_cost_from_text(cost_text1)
        cost2 = extract_cost_from_text(cost_text2)

        r = cost1 / cost2

        if r < 1:
            comparison_result = f"First solution is cheaper, with a ratio of {r:.2f}."
        elif r > 1:
            comparison_result = f"Second solution is cheaper, with a ratio of {r:.2f}."
        else:
            comparison_result = "Both solutions will cost the same."

        return comparison_result

    except ValueError as e:
        return f"Error: {str(e)}"

def update_plot(diy_value, saas_value):
                    data = pd.DataFrame(
                        {
                            "Solution": ["Home-made", "SaaS"],
                            "Cost/token ($)": [diy_value, saas_value],
                        }
                    )
                    return gr.BarPlot.update(data, x="Solution", y="Cost/token ($)")

description=f"""
<p>In this demo application, we help you compare different solutions for your AI incorporation plans, such as open-source or SaaS.</p>
<p>First, you'll have to choose the two solutions you'd like to compare. Then, follow the instructions to select your configurations for each solution and we will compute the cost/request accordingly to them. Eventually, you can compare both solutions to evaluate which one best suits your needs, in the short or long term.</p>
"""
description1=f"""
<p>This interface provides you with the cost per request you get using the open-source solution, based on the model you choose to use and how long you're planning to use it.</p>
<p>The selected prices for a Virtual Machine rental come from Azure's VM rental plans, which can offer reductions for long-term reserved usage.</p>
<p>To compute this cost per requets, some adjustments were chosen: the VM is an A100 40GB, supposedly maxed out at 80% and utilized 50% of the time in a full day. Plus, the number of tokens per request was set to 64.</p>
<p>To see the formula used to compute the cost/request, check the box just below!</p> 
"""
description2=f"""
<p>This interface provides you with the cost per request resulting from the AI model provider you choose and the number of tokens you select for context, which the model will take into account when processing input texts.</p>
<p>To compute this cost per request, some adjustments were chosen: the number of tokens per request was set to 64.</p>
<p>To see the formula used to compute the cost/request, check the box just below!</p> 
"""
description3=f"""
<p>This interface compares the cost per request for the two solutions you selected and gives you an insight of whether a solution is more valuable in the long term.</p>
"""

models = ["Llama-2-7B", "Llama-2-13B", "Llama-2-70B"]
vm_rental_choice = ["pay as you go", "1 year reserved", "3 years reserved"]
model_provider = ["OpenAI"]
context = ["4K context", "16K context"]
error_box = gr.Textbox(label="Error", visible=False)

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(value=text)
    gr.Markdown(value=description)
    
    out_diy = gr.State(value=0)
    out_saas = gr.State(value=0)
    out_diy2 = gr.State(value=0)
    out_saas2 = gr.State(value=0)
    
    with gr.Row():
        with gr.Column():
        
            solution_selection = gr.Dropdown(["SaaS", "Open-source"], label="Select a Solution")
            
            with gr.Row(visible=False) as title_column:            
                gr.Markdown(value=text1)

            with gr.Row(visible=False) as text_diy_column:
                gr.Markdown(description1)
            
            with gr.Row(visible=False) as input_diy_column:
                model_inp = gr.Dropdown(models, label="Select an AI Model")
                rental_plan_inp = gr.Dropdown(vm_rental_choice, label="Select a VM Rental Plan")
                rental_plan_inp.change(fn=calculate_tco, inputs=[model_inp, rental_plan_inp, out_diy], outputs=out_diy)

            with gr.Row(visible=False) as text_saas_column:
                gr.Markdown(description2)
            
            with gr.Row(visible=False) as input_saas_column:
                model_provider_inp = gr.Dropdown(model_provider, label="Model Provider")
                context_inp = gr.Dropdown(context, label="Context")
                context_inp.change(fn=calculate_tco_2, inputs=[model_provider_inp, context_inp, out_saas], outputs=out_saas)
    
            def submit(solution_selection):
                if solution_selection == "Open-source":
                    return {
                        title_column: gr.update(visible=True),
                        text_diy_column: gr.update(visible=True),
                        input_diy_column: gr.update(visible=True),
                        text_saas_column: gr.update(visible=False),                       
                        input_saas_column: gr.update(visible=False),
                    }     
                else: 
                    return {
                        text_diy_column: gr.update(visible=False),
                        input_diy_column: gr.update(visible=False),
                        title_column: gr.update(visible=True),                        
                        text_saas_column: gr.update(visible=True),                       
                        input_saas_column: gr.update(visible=True),
                    }
            
            solution_selection.change(
                submit,
                solution_selection,
                [out_saas, text_diy_column, title_column, text_saas_column, model_inp, rental_plan_inp, model_provider_inp, context_inp, input_diy_column, input_saas_column],
            )
            
        # gr.Divider(style="vertical", thickness=2, color="blue")
         
        with gr.Column():
            
            solution_selection2 = gr.Dropdown(["SaaS", "Open-source"], label="Select a Solution")
            
            with gr.Row(visible=False) as title_column2:            
                gr.Markdown(value=text2)
            
            with gr.Row(visible=False) as text_diy_column2:            
                gr.Markdown(description1)
            
            with gr.Row(visible=False) as input_diy_column2:
                model_inp2 = gr.Dropdown(models, label="Select an AI Model")
                rental_plan_inp2 = gr.Dropdown(vm_rental_choice, label="Select a VM Rental Plan")
                rental_plan_inp2.change(fn=calculate_tco, inputs=[model_inp2, rental_plan_inp2, out_diy2], outputs=out_diy2)
                      
            with gr.Row(visible=False) as text_saas_column2:            
                gr.Markdown(description2)
            
            with gr.Row(visible=False) as input_saas_column2:
                model_provider_inp2 = gr.Dropdown(['OpenAI'], label="Model Provider")
                context_inp2 = gr.Dropdown(['4K context', '16K context'], label="Context")
                context_inp2.change(fn=calculate_tco_2, inputs=[model_provider_inp2, context_inp2, out_saas2], outputs=out_saas2)
            
            def submit2(solution_selection2):
                if solution_selection2 == "Open-source":
                    return {
                        title_column2: gr.update(visible=True),
                        text_diy_column2: gr.update(visible=True),
                        input_diy_column2: gr.update(visible=True),
                        text_saas_column2: gr.update(visible=False),                       
                        input_saas_column2: gr.update(visible=False),
                    }     
                else: 
                    return {
                        text_diy_column2: gr.update(visible=False),
                        input_diy_column2: gr.update(visible=False),
                        title_column2: gr.update(visible=True),
                        text_saas_column2: gr.update(visible=True),                        
                        input_saas_column2: gr.update(visible=True),
                    }
            
            solution_selection2.change(
                submit2,
                solution_selection2,
                [out_diy2, out_saas2, title_column2, text_diy_column2, text_saas_column2, model_inp2, rental_plan_inp2, model_provider_inp2, context_inp2, input_diy_column2, input_saas_column2],
            )
    
    with gr.Row():
        with gr.Column():
            
            with gr.Row():
                gr.Markdown(text3)
                
            with gr.Row():
                plot = gr.BarPlot(title="Comparison", x_title="Solution", y_title="Cost/token ($)", interactive=True, width=500)
                if solution_selection=="Open-source":
                    context_inp2.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
                    model_provider_inp2.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
                    rental_plan_inp.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
                    model_inp.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
                else:
                    rental_plan_inp2.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
                    context_inp.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
                    model_provider_inp.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
                    model_inp2.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
       
demo.launch()