crazy / app.py
LovnishVerma's picture
Update app.py
610503e verified
raw
history blame
2.56 kB
import streamlit as st
from PIL import Image
import face_recognition
import cv2
import numpy as np
import os
def load_images(directory):
images = []
classnames = []
file_list = os.listdir(directory)
st.write("Photographs found in folder : ")
for file in file_list:
if os.path.splitext(file)[1] in [".jpg", ".jpeg"]:
img_path = os.path.join(directory, file)
cur_img = cv2.imread(img_path)
images.append(cur_img)
st.write(os.path.splitext(file)[0])
classnames.append(os.path.splitext(file)[0])
return images, classnames
def recognize_faces(test_image, known_encodings, class_names):
imgS = cv2.resize(test_image, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
name = "Unknown" # Default name for unknown faces
match_found = False # Flag to track if a match is found
# Checking if faces are detected
if len(encodesCurFrame) > 0:
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(known_encodings, encodeFace)
faceDis = face_recognition.face_distance(known_encodings, encodeFace)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = class_names[matchIndex].upper()
match_found = True # Set the flag to True
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4)
cv2.rectangle(test_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(test_image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(test_image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
return test_image
st.title("AIMLJan24 - Face Recognition")
# Load images for face recognition
directory = "photos"
Images, classnames = load_images(directory)
# Load images for face recognition
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]
# camera to take photo of user in question
file_name = st.file_uploader("Upload image")
if file_name is not None:
test_image = np.array(Image.open(file_name))
image_with_recognition = recognize_faces(test_image, encodeListknown, classnames)
st.image(image_with_recognition, use_column_width=True, output_format="PNG")