Spaces:
Sleeping
Sleeping
LovnishVerma
commited on
Commit
•
610503e
1
Parent(s):
5ca6adb
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
-
# from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import face_recognition
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
-
import requests
|
8 |
import os
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
Images = [] # List to store Images
|
15 |
-
classnames = [] # List to store classnames
|
16 |
-
directory = "photos"
|
17 |
-
myList = os.listdir(directory)
|
18 |
-
|
19 |
-
st.write("Photographs found in folder : ")
|
20 |
-
for cls in myList:
|
21 |
-
if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]:
|
22 |
-
img_path = os.path.join(directory, cls)
|
23 |
-
curImg = cv2.imread(img_path)
|
24 |
-
Images.append(curImg)
|
25 |
-
st.write(os.path.splitext(cls)[0])
|
26 |
-
classnames.append(os.path.splitext(cls)[0])
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
image = np.asarray(test_image)
|
39 |
|
40 |
-
|
|
|
41 |
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
42 |
-
facesCurFrame
|
43 |
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
|
44 |
|
45 |
name = "Unknown" # Default name for unknown faces
|
@@ -48,48 +33,36 @@ if file_name is not None:
|
|
48 |
# Checking if faces are detected
|
49 |
if len(encodesCurFrame) > 0:
|
50 |
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
|
51 |
-
|
52 |
-
|
53 |
-
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
|
54 |
matchIndex = np.argmin(faceDis)
|
55 |
|
56 |
if matches[matchIndex]:
|
57 |
-
name =
|
58 |
match_found = True # Set the flag to True
|
59 |
|
60 |
y1, x2, y2, x1 = faceLoc
|
61 |
y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4)
|
62 |
-
cv2.rectangle(test_image
|
63 |
-
cv2.rectangle(test_image
|
64 |
-
cv2.putText(test_image
|
65 |
|
66 |
-
|
67 |
-
else:
|
68 |
-
st.warning("No faces detected in the image. Face recognition failed.")
|
69 |
|
70 |
-
|
71 |
-
# col1.image(image, use_column_width=True)
|
72 |
-
|
73 |
-
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
74 |
-
|
75 |
-
# st.title("AIMLJan24 First App on Hugging face - Hot Dog? Or Not?")
|
76 |
-
|
77 |
-
# file_name = st.file_uploader("Upload the test image to find is this hot dog ! ")
|
78 |
-
|
79 |
-
# if file_name is not None:
|
80 |
-
# col1, col2 = st.columns(2)
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
# col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
|
89 |
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
|
|
|
|
93 |
|
94 |
-
# x = st.slider('Select a value')
|
95 |
-
# st.write(x, 'squared is', x * x)
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
import face_recognition
|
4 |
import cv2
|
5 |
import numpy as np
|
|
|
6 |
import os
|
7 |
|
8 |
+
def load_images(directory):
|
9 |
+
images = []
|
10 |
+
classnames = []
|
11 |
+
file_list = os.listdir(directory)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
st.write("Photographs found in folder : ")
|
14 |
+
for file in file_list:
|
15 |
+
if os.path.splitext(file)[1] in [".jpg", ".jpeg"]:
|
16 |
+
img_path = os.path.join(directory, file)
|
17 |
+
cur_img = cv2.imread(img_path)
|
18 |
+
images.append(cur_img)
|
19 |
+
st.write(os.path.splitext(file)[0])
|
20 |
+
classnames.append(os.path.splitext(file)[0])
|
21 |
|
22 |
+
return images, classnames
|
|
|
23 |
|
24 |
+
def recognize_faces(test_image, known_encodings, class_names):
|
25 |
+
imgS = cv2.resize(test_image, (0, 0), None, 0.25, 0.25)
|
26 |
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
27 |
+
facesCurFrame = face_recognition.face_locations(imgS)
|
28 |
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
|
29 |
|
30 |
name = "Unknown" # Default name for unknown faces
|
|
|
33 |
# Checking if faces are detected
|
34 |
if len(encodesCurFrame) > 0:
|
35 |
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
|
36 |
+
matches = face_recognition.compare_faces(known_encodings, encodeFace)
|
37 |
+
faceDis = face_recognition.face_distance(known_encodings, encodeFace)
|
|
|
38 |
matchIndex = np.argmin(faceDis)
|
39 |
|
40 |
if matches[matchIndex]:
|
41 |
+
name = class_names[matchIndex].upper()
|
42 |
match_found = True # Set the flag to True
|
43 |
|
44 |
y1, x2, y2, x1 = faceLoc
|
45 |
y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4)
|
46 |
+
cv2.rectangle(test_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
47 |
+
cv2.rectangle(test_image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
|
48 |
+
cv2.putText(test_image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
|
49 |
|
50 |
+
return test_image
|
|
|
|
|
51 |
|
52 |
+
st.title("AIMLJan24 - Face Recognition")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Load images for face recognition
|
55 |
+
directory = "photos"
|
56 |
+
Images, classnames = load_images(directory)
|
57 |
|
58 |
+
# Load images for face recognition
|
59 |
+
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]
|
|
|
60 |
|
61 |
+
# camera to take photo of user in question
|
62 |
+
file_name = st.file_uploader("Upload image")
|
63 |
|
64 |
+
if file_name is not None:
|
65 |
+
test_image = np.array(Image.open(file_name))
|
66 |
+
image_with_recognition = recognize_faces(test_image, encodeListknown, classnames)
|
67 |
+
st.image(image_with_recognition, use_column_width=True, output_format="PNG")
|
68 |
|
|
|
|