Leri777's picture
Update app.py
569b33f verified
raw
history blame
3.46 kB
import os
import logging
from logging.handlers import RotatingFileHandler
import gradio as gr
from transformers import AutoTokenizer, BitsAndBytesConfig
from langchain_huggingface import ChatHuggingFace
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# Настройка логирования
log_file = '/tmp/app_debug.log'
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
file_handler = RotatingFileHandler(log_file, maxBytes=10*1024*1024, backupCount=5)
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(file_handler)
logger.debug("Application started")
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
MODEL_NAME = MODEL_ID.split("/")[-1]
template = """<|im_start|>system\n{system_prompt}\n<|im_end|>\n{history}<|im_start|>user\n{human_input}\n<|im_end|>\n<|im_start|>assistant\n"""
prompt = PromptTemplate(template=template, input_variables=["system_prompt", "history", "human_input"])
def format_history(history):
return "".join([f"<|im_start|>user\n{h[0]}\n<|im_end|>\n<|im_start|>assistant\n{h[1]}\n<|im_end|>\n" for h in history])
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
logger.debug(f"Received prediction request: message='{message}', system_prompt='{system_prompt}'")
chat_model.temperature = temperature
chat_model.max_new_tokens = max_new_tokens
chat_model.top_k = top_k
chat_model.repetition_penalty = repetition_penalty
chat_model.top_p = top_p
chain = LLMChain(llm=chat_model, prompt=prompt)
try:
formatted_history = format_history(history)
for chunk in chain.stream({"system_prompt": system_prompt, "history": formatted_history, "human_input": message}):
yield chunk["text"]
logger.debug(f"Prediction completed successfully for message: '{message}'")
except Exception as e:
logger.exception(f"Error during prediction: {str(e)}")
yield "An error occurred during processing."
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
chat_model = ChatHuggingFace(
model_name=MODEL_ID,
tokenizer=tokenizer,
model_kwargs={
"device_map": "auto",
"quantization_config": BitsAndBytesConfig(load_in_4bit=True),
}
)
logger.debug("Model and tokenizer loaded successfully")
gr.ChatInterface(
predict,
title=f"🤖 {MODEL_NAME}",
description=f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks.",
examples=[
["Can you solve the equation 2x + 3 = 11 for x in Python?"],
["Write a Java program that checks if a number is even or odd."],
["How can I reverse a string in JavaScript?"],
["Create a C++ function to find the factorial of a number."],
["Write a Python list comprehension to generate a list of squares of numbers from 1 to 10."],
],
additional_inputs=[
gr.Textbox("You are a code assistant.", label="System prompt"),
gr.Slider(0, 1, 0.3, label="Temperature"),
gr.Slider(128, 4096, 1024, label="Max new tokens"),
gr.Slider(1, 80, 40, label="Top K sampling"),
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
gr.Slider(0, 1, 0.95, label="Top P sampling"),
],
theme=gr.themes.Soft(primary_hue="blue"),
).queue().launch()
logger.debug("Chat interface initialized and launched")