Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import os
|
|
2 |
import logging
|
3 |
from logging.handlers import RotatingFileHandler
|
4 |
|
5 |
-
import torch
|
6 |
import gradio as gr
|
7 |
from transformers import AutoTokenizer, BitsAndBytesConfig
|
8 |
from langchain_huggingface import ChatHuggingFace
|
@@ -14,45 +13,23 @@ log_file = '/tmp/app_debug.log'
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
logger.setLevel(logging.DEBUG)
|
16 |
file_handler = RotatingFileHandler(log_file, maxBytes=10*1024*1024, backupCount=5)
|
17 |
-
file_handler.
|
18 |
-
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
19 |
-
file_handler.setFormatter(formatter)
|
20 |
logger.addHandler(file_handler)
|
21 |
|
22 |
logger.debug("Application started")
|
23 |
|
24 |
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
25 |
-
CHAT_TEMPLATE = "ChatML"
|
26 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
27 |
-
CONTEXT_LENGTH = 16000
|
28 |
|
29 |
-
|
30 |
-
EMOJI = "🤖"
|
31 |
-
DESCRIPTION = f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks."
|
32 |
-
|
33 |
-
# Prompt template for conversation
|
34 |
-
template = """<|im_start|>system
|
35 |
-
{system_prompt}
|
36 |
-
<|im_end|>
|
37 |
-
{history}
|
38 |
-
<|im_start|>user
|
39 |
-
{human_input}
|
40 |
-
<|im_end|>
|
41 |
-
<|im_start|>assistant
|
42 |
-
"""
|
43 |
prompt = PromptTemplate(template=template, input_variables=["system_prompt", "history", "human_input"])
|
44 |
|
45 |
def format_history(history):
|
46 |
-
|
47 |
-
for human, ai in history:
|
48 |
-
formatted += f"<|im_start|>user\n{human}\n<|im_end|>\n<|im_start|>assistant\n{ai}\n<|im_end|>\n"
|
49 |
-
return formatted
|
50 |
|
51 |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
52 |
logger.debug(f"Received prediction request: message='{message}', system_prompt='{system_prompt}'")
|
53 |
|
54 |
-
formatted_history = format_history(history)
|
55 |
-
|
56 |
chat_model.temperature = temperature
|
57 |
chat_model.max_new_tokens = max_new_tokens
|
58 |
chat_model.top_k = top_k
|
@@ -62,41 +39,36 @@ def predict(message, history, system_prompt, temperature, max_new_tokens, top_k,
|
|
62 |
chain = LLMChain(llm=chat_model, prompt=prompt)
|
63 |
|
64 |
try:
|
|
|
65 |
for chunk in chain.stream({"system_prompt": system_prompt, "history": formatted_history, "human_input": message}):
|
66 |
yield chunk["text"]
|
67 |
logger.debug(f"Prediction completed successfully for message: '{message}'")
|
68 |
except Exception as e:
|
69 |
-
logger.exception(f"Error during prediction
|
70 |
yield "An error occurred during processing."
|
71 |
|
72 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
73 |
-
quantization_config = BitsAndBytesConfig(
|
74 |
-
load_in_4bit=True,
|
75 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
76 |
-
)
|
77 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
78 |
-
|
79 |
chat_model = ChatHuggingFace(
|
80 |
model_name=MODEL_ID,
|
|
|
81 |
model_kwargs={
|
82 |
"device_map": "auto",
|
83 |
-
"quantization_config":
|
84 |
-
}
|
85 |
-
tokenizer=tokenizer
|
86 |
)
|
87 |
|
88 |
logger.debug("Model and tokenizer loaded successfully")
|
89 |
|
90 |
gr.ChatInterface(
|
91 |
predict,
|
92 |
-
title=
|
93 |
-
description=
|
94 |
examples=[
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
],
|
101 |
additional_inputs=[
|
102 |
gr.Textbox("You are a code assistant.", label="System prompt"),
|
@@ -106,7 +78,7 @@ gr.ChatInterface(
|
|
106 |
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
107 |
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
108 |
],
|
109 |
-
theme=gr.themes.Soft(primary_hue=
|
110 |
).queue().launch()
|
111 |
|
112 |
logger.debug("Chat interface initialized and launched")
|
|
|
2 |
import logging
|
3 |
from logging.handlers import RotatingFileHandler
|
4 |
|
|
|
5 |
import gradio as gr
|
6 |
from transformers import AutoTokenizer, BitsAndBytesConfig
|
7 |
from langchain_huggingface import ChatHuggingFace
|
|
|
13 |
logger = logging.getLogger(__name__)
|
14 |
logger.setLevel(logging.DEBUG)
|
15 |
file_handler = RotatingFileHandler(log_file, maxBytes=10*1024*1024, backupCount=5)
|
16 |
+
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
|
|
|
|
|
17 |
logger.addHandler(file_handler)
|
18 |
|
19 |
logger.debug("Application started")
|
20 |
|
21 |
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
|
|
22 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
|
|
23 |
|
24 |
+
template = """<|im_start|>system\n{system_prompt}\n<|im_end|>\n{history}<|im_start|>user\n{human_input}\n<|im_end|>\n<|im_start|>assistant\n"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
prompt = PromptTemplate(template=template, input_variables=["system_prompt", "history", "human_input"])
|
26 |
|
27 |
def format_history(history):
|
28 |
+
return "".join([f"<|im_start|>user\n{h[0]}\n<|im_end|>\n<|im_start|>assistant\n{h[1]}\n<|im_end|>\n" for h in history])
|
|
|
|
|
|
|
29 |
|
30 |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
31 |
logger.debug(f"Received prediction request: message='{message}', system_prompt='{system_prompt}'")
|
32 |
|
|
|
|
|
33 |
chat_model.temperature = temperature
|
34 |
chat_model.max_new_tokens = max_new_tokens
|
35 |
chat_model.top_k = top_k
|
|
|
39 |
chain = LLMChain(llm=chat_model, prompt=prompt)
|
40 |
|
41 |
try:
|
42 |
+
formatted_history = format_history(history)
|
43 |
for chunk in chain.stream({"system_prompt": system_prompt, "history": formatted_history, "human_input": message}):
|
44 |
yield chunk["text"]
|
45 |
logger.debug(f"Prediction completed successfully for message: '{message}'")
|
46 |
except Exception as e:
|
47 |
+
logger.exception(f"Error during prediction: {str(e)}")
|
48 |
yield "An error occurred during processing."
|
49 |
|
|
|
|
|
|
|
|
|
|
|
50 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
|
51 |
chat_model = ChatHuggingFace(
|
52 |
model_name=MODEL_ID,
|
53 |
+
tokenizer=tokenizer,
|
54 |
model_kwargs={
|
55 |
"device_map": "auto",
|
56 |
+
"quantization_config": BitsAndBytesConfig(load_in_4bit=True),
|
57 |
+
}
|
|
|
58 |
)
|
59 |
|
60 |
logger.debug("Model and tokenizer loaded successfully")
|
61 |
|
62 |
gr.ChatInterface(
|
63 |
predict,
|
64 |
+
title=f"🤖 {MODEL_NAME}",
|
65 |
+
description=f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks.",
|
66 |
examples=[
|
67 |
+
["Can you solve the equation 2x + 3 = 11 for x in Python?"],
|
68 |
+
["Write a Java program that checks if a number is even or odd."],
|
69 |
+
["How can I reverse a string in JavaScript?"],
|
70 |
+
["Create a C++ function to find the factorial of a number."],
|
71 |
+
["Write a Python list comprehension to generate a list of squares of numbers from 1 to 10."],
|
72 |
],
|
73 |
additional_inputs=[
|
74 |
gr.Textbox("You are a code assistant.", label="System prompt"),
|
|
|
78 |
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
79 |
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
80 |
],
|
81 |
+
theme=gr.themes.Soft(primary_hue="blue"),
|
82 |
).queue().launch()
|
83 |
|
84 |
logger.debug("Chat interface initialized and launched")
|