File size: 1,187 Bytes
189a7a7
5b015fd
189a7a7
 
 
 
5b015fd
5a7188e
8ab4ca8
189a7a7
b58ca25
1c16e2a
189a7a7
3c353fd
 
7500084
 
8ab4ca8
7500084
189a7a7
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import os
#from langchain import PromptTemplate, HuggingFaceHub, LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
import langchain.globals
from transformers import AutoModelForCausalLM, AutoTokenizer
import streamlit as st
from langchain_community.llms import HuggingFaceHub
from transformers import pipeline

my_model_id = os.getenv('MODEL_REPO_ID', 'Default Value')
token = os.getenv('HUGGINGFACEHUB_API_TOKEN')

@st.cache_resource 
def load_model():
    tokenizer = AutoTokenizer.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b")
    model = AutoModelForCausalLM.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b")
    
    return tokenizer,model

def demo_miny_memory(model):
    # llm_data = get_Model(hugging_face_key)
    memory = ConversationBufferMemory(llm = model,max_token_limit = 512)
    return memory

def demo_chain(input_text, memory,model):
    # llm_data = get_Model(hugging_face_key)
    llm_conversation = ConversationChain(llm=model,memory=memory,verbose=langchain.globals.get_verbose())

    chat_reply = llm_conversation.predict(input=input_text)
    return chat_reply