KvrParaskevi commited on
Commit
5a7188e
1 Parent(s): c664e72

Update chatbot_bedrock.py

Browse files
Files changed (1) hide show
  1. chatbot_bedrock.py +14 -26
chatbot_bedrock.py CHANGED
@@ -5,37 +5,25 @@ from langchain.chains import ConversationChain
5
  import langchain.globals
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  import streamlit as st
8
- from langchain_core.runnables.base import Runnable
9
 
10
- class HuggingFaceModelWrapper(Runnable): # Assuming Runnable is the required interface
11
- def __init__(self, model, tokenizer):
12
- self.model = model
13
- self.tokenizer = tokenizer
14
-
15
- def run(self, input_text):
16
- # Convert the input text to tokens
17
- input_ids = self.tokenizer.encode(input_text, return_tensors="pt")
18
-
19
- # Generate a response from the model
20
- output = self.model.generate(input_ids, max_length=100, num_return_sequences=1)
21
-
22
- # Decode the generated tokens to a string
23
- response_text = self.tokenizer.decode(output[0], skip_special_tokens=True)
24
- return response_text
25
- def invoke(self, *args, **kwargs):
26
- # Implement the 'invoke' method as required by the abstract base class/interface
27
- # The implementation here depends on what 'invoke' is supposed to do. As an example:
28
-
29
- # Assuming 'invoke' should process some input and return a model response
30
- input_text = args[0] if args else kwargs.get('input_text', '')
31
- return self.run(input_text)
32
 
33
 
34
  @st.cache_resource
35
  def load_model():
36
- tokenizer = AutoTokenizer.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b")
37
- model = AutoModelForCausalLM.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b")
38
- return tokenizer,model
 
 
 
 
 
 
 
 
 
 
39
 
40
  def demo_miny_memory(model):
41
  # llm_data = get_Model(hugging_face_key)
 
5
  import langchain.globals
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  import streamlit as st
8
+ from langchain_community.llms import HuggingFaceHub
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
 
12
  @st.cache_resource
13
  def load_model():
14
+ #tokenizer = AutoTokenizer.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b")
15
+ #model = AutoModelForCausalLM.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b")
16
+ model = HuggingFaceHub(
17
+ repo_id="KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b",
18
+ task="text-generation",
19
+ model_kwargs={
20
+ "max_new_tokens": 512,
21
+ "top_k": 30,
22
+ "temperature": 0.1,
23
+ "repetition_penalty": 1.03,
24
+ },
25
+ )
26
+ return model
27
 
28
  def demo_miny_memory(model):
29
  # llm_data = get_Model(hugging_face_key)