File size: 4,838 Bytes
10d6a86
 
ae92cb7
 
 
10d6a86
 
ae92cb7
 
 
 
10d6a86
 
 
ae92cb7
 
10d6a86
 
 
 
 
 
ae92cb7
10d6a86
 
 
ae92cb7
10d6a86
 
 
 
 
 
ae92cb7
 
 
 
 
 
10d6a86
ae92cb7
 
 
10d6a86
ae92cb7
 
10d6a86
ae92cb7
 
10d6a86
 
ae92cb7
10d6a86
 
ae92cb7
 
 
10d6a86
ae92cb7
 
 
10d6a86
ae92cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os, pickle
from typing import List
from .loaders.file import extractor
from .chunk_embed import chunk_vectorize
from ..settings import parquet_file
from .logger import logger
from .vectorstore import VectorStore
from .post_process import IsPii, IsToxic, IsRelevant
from .summary import summarize_it

multirag_vectorstore = VectorStore(model_path='sentence-transformers/all-mpnet-base-v2')


def empty_collection():
    """ Deletes the MultiRAG collection if it exists """
    status = multirag_vectorstore.empty_collection()
    return status


def index_data():
    
    if not os.path.exists(parquet_file):
        logger(f"Parquet file {parquet_file} does not exists")
        return 'no data to index'
    
    # load the parquet file into the vectorstore
    multirag_vectorstore.index_data()
    os.remove(parquet_file)
    # delete the files so we can load several files and index them when we want
    # without having to keep track of those that have been indexed already
    # this is a simple solution for now, but we can do better
    
    return "Index creation successful"


def process_pdf(filepath: str) -> dict:
    
    new_content = extractor('PyPDFLoader', filepath).extract_text()
    logger(f"Successfully extracted text from PDF")
    
    chunk_vectorize(new_content)
    logger(f"Successfully vectorized PDF content of {filepath}")
    return new_content


def process_txt(filepath: str) -> dict:
    
    new_content = extractor('txt', filepath).extract_text()
    logger(f"Successfully extracted text from TXT")
    
    chunk_vectorize(new_content)
    logger(f"Successfully vectorized TXT content")
    return new_content


def vector_search_raw(question: str) -> List[str]:
    """ Just vector search """
    
    ans = multirag_vectorstore.hybrid_search(query=question, 
                                             limit=10, 
                                             alpha=0.8)
    return ans

def vector_search(question: str, relevance_thr=0.3) -> List[str]:
    """ Search + pre/post processing """
    
    ## PRE PROCESSING
    if IsToxic(question):
        ans =  [f"\"{question}\" is toxic, try again"]
        return ans

    ans = multirag_vectorstore.hybrid_search(query=question, 
                                             limit=10, 
                                             alpha=0.8)
    
    max_score = max([score for _, _, score in ans])
    # if no answer has a score high enough, we consider the question irrelevant
    # we could do better with reranking but here the question is trivial, y/n
    # it's not like reranking 100 answers to pick the best 5 for RAGing
    if max_score < relevance_thr:
        return [f"{question} is IRRELEVANT with max score: {max_score:.2f}, try again"]
    else:
        answers = [f"{question} is deemed RELEVANT with max score: {max_score:.2f}"]
    
    # let's first quickly print the answers, without summary
    for i, (fname, ans, score) in enumerate(ans, 1):
        
        if score < relevance_thr:
            continue
        
        if IsPii(ans):
          ans = " Pii detected -" + ans
        
        # removed, not accurate
        if IsRelevant(ans, question):
            relevant = 'RELEVANT'
        else:
            # irrelevant answer
            relevant = 'IRRELEVANT'
        
        summary = summarize_it(question, [ans])
        ans = f"{ans}\n SUMMARY: {summary}"
        
        answers.append(f"{i}: from {fname} - score:{score:.2f} - {relevant} answer - {ans}")

    # msg = f"Answers to '{self.question}' with summaries"
    # self.chats[self.current_chat] = [qa1]
    
    # for i, (fname, ans, score) in enumerate(self.answer['answer'], 1):
        
    #     if score < relevance_thr:
    #         continue
        
    #     msg = ""
    #     summary = summarize_it(self.question, [ans])
        
    #     # if IsPii(ans):
    #     #   qa.answer += " Pii detected -"
        
    #     # removed, not accurate
    #     # if IsRelevant(ans, self.question):
    #     #     relevant = 'RELEVANT'
    #     # else:
    #     #     # irrelevant answer
    #     #     relevant = 'IRRELEVANT'
    #     # qa.answer += f" {relevant} ANSWER - {ans} \n SUMMARY: {summary}"
        
    #     qa = QA(question=msg, 
    #             answer=f"{i}: from {fname} - score:{score:.2f} - {ans} - SUMMARY: {summary}"
    #             )
        
    #     # paths are from /assets, so data is assets/data
    #     search = ans[:30].replace(" ", "%20")   # let's search only first 30 chars
    #     qa.link = f'data/{fname}#:~:text={search}'
    #     qa.msg = " - Verify in the document"
    #     logger(f"Summary: {summary}")
        
    #     # it's slower now because of the summaries
    #     self.chats[self.current_chat].append(qa)
    #     yield

    #     msg = ""
    
    return answers