File size: 8,097 Bytes
ae92cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f4ab2
ae92cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# this is the original main.py file, but without the call to fastapi
# since it is done by reflex's own fast api server

import os, random, logging, pickle, shutil
from dotenv import load_dotenv, find_dotenv
from typing import Optional
from pydantic import BaseModel, Field

from fastapi import FastAPI, HTTPException, File, UploadFile, status
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware

try:
    load_dotenv(find_dotenv('env'))
    
except Exception as e:
    pass 

from app.engine.processing import (  # << creates the collection already
    process_pdf, 
    process_txt,
    index_data, 
    empty_collection, 
    vector_search,
    vector_search_raw
)
from .rag.rag import rag_it

from .engine.logger import logger

from .settings import datadir, datadir2

if not os.path.exists(datadir):
    os.makedirs(datadir, exist_ok=True)

if not os.path.exists(datadir2):
    os.makedirs(datadir2, exist_ok=True)

os.makedirs(datadir, exist_ok=True)

EXTENSIONS = ["pdf", "txt"]

app = FastAPI()

environment = os.getenv("ENVIRONMENT", "dev")  # created by dockerfile

# replaced by cors_allowed_origins=['*'] in rxconfig.py when using Reflex endpoint
# if environment == "dev":
#     logger("Running in development mode - allowing CORS for all origins")
#     app.add_middleware(
#         CORSMiddleware,
#         allow_origins=["*"],
#         allow_credentials=True,
#         allow_methods=["*"],
#         allow_headers=["*"],
#     )


# not used when using Reflex endpoint
@app.get("/", response_class=HTMLResponse)
def read_root():
    logger("Title displayed on home page")
    return """
    <html>
        <body>
            <h1>Welcome to MultiRAG, a RAG system designed by JP Bianchi!</h1>
        </body>
    </html>
    """

# already provided by Reflex
@app.get("/ping/")
def ping():
    """ Testing """
    logger("Someone is pinging the server")
    return {"answer": str(int(random.random() * 100))}


@app.delete("/erase_data/")
def erase_data():
    """ Erase all files in the data directory at the first level only,
        (in case we would like to use it for something else) 
        but not the vector store or the parquet file.
        We can do it since the embeddings are in the parquet file already.
    """
    if len(os.listdir(datadir)) == 0:
        logger("No data to erase")
        return {"message": "No data to erase"}
    
    # if we try to rmtree datadir, it looks like /data can't be deleted on HF
    for f in os.listdir(datadir):
        if f == '.DS_Store' or f.split('.')[-1].lower() in EXTENSIONS:
            print(f"Removing {f}")
            os.remove(os.path.join(datadir, f))
            # we don't remove the parquet file, create_index does that
    
    logger("All data has been erased")
    return {"message": "All data has been erased"}


@app.delete("/empty_collection/")
def delete_vectors():
    """ Empty the collection in the vector store """
    try:
        status = empty_collection()
        return {"message": f"Collection{'' if status else ' NOT'} erased!"}
    except Exception as e:
        raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e))


@app.get("/list_files/")
def list_files():
    """ List all files in the data directory """
    print("Listing files")
    files = os.listdir(datadir)
    logger(f"Files in data directory: {files}")
    return {"files": files}


@app.post("/upload/")
# @limiter.limit("5/minute") see 'slowapi' for rate limiting
async def upload_file(file: UploadFile = File(...)):
    """  Uploads a file in data directory, for later indexing """
    try:
        filepath = os.path.join(datadir, file.filename)
        logger(f"Fiename detected: {file.filename}")
        if os.path.exists(filepath):
            logger(f"File {file.filename} already exists: no processing done")
            return {"message": f"File {file.filename} already exists: no processing done"}    

        else:
            logger(f"Receiving file: {file.filename}")
            contents = await file.read()
            logger(f"File reception complete!")
            
    except Exception as e:
        logger(f"Error during file upload: {str(e)}")
        return {"message": f"Error during file upload:  {str(e)}"}
    
    if file.filename.endswith('.pdf'):
        
        # let's save the file in /data even if it's temp storage on HF
        with open(filepath, 'wb') as f:
            f.write(contents)
        
        # save it also in assets/data because data can be cleared
        filepath2 = os.path.join(datadir2, file.filename)
        with open(filepath2, 'wb') as f:
            f.write(contents)
                
        try:
            logger(f"Starting to process {file.filename}")
            new_content = process_pdf(filepath)
            success = {"message": f"Successfully uploaded {file.filename}"}
            success.update(new_content)
            return success
        
        except Exception as e:
            return {"message": f"Failed to extract text from PDF: {str(e)}"}
    
    elif file.filename.endswith('.txt'):
        
        with open(filepath, 'wb') as f:
            f.write(contents)
        
        filepath2 = os.path.join(datadir2, file.filename)
        with open(filepath2, 'wb') as f:
            f.write(contents)
            
        try:
            logger(f"Reading {file.filename}")
            new_content = process_txt(filepath)
            success = {"message": f"Successfully uploaded {file.filename}"}
            success.update(new_content)
            return success
        
        except Exception as e:
            return {"message": f"Failed to extract text from TXT: {str(e)}"}
        
    else:
        return {"message": "Only PDF & txt files are accepted"}


@app.post("/create_index/")
async def create_index():
    """ Create an index for the uploaded files """
    
    logger("Creating index for uploaded files")
    try:
        msg = index_data()
        return {"message": msg}
    except Exception as e:
        raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e))


class Question(BaseModel):
    question: str

@app.post("/ask/")
async def hybrid_search(question: Question):
    logger(f"Processing question: {question.question}")
    try:
        search_results = vector_search(question.question) 
        logger(f"Answer: {search_results}")
        return {"answer": search_results}
    except Exception as e:
        raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e))
    

@app.post("/ragit/")
async def ragit(question: Question):
    logger(f"Processing question: {question.question}")
    try:
        search_results = vector_search_raw(question.question) 
        logger(f"Search results generated: {search_results}")
        
        answer = rag_it(question.question, search_results)
        
        logger(f"Answer: {answer}")
        return {"answer": answer}
    except Exception as e:
        raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e))
    

if __name__ == '__main__':
    import uvicorn
    from os import getenv
    port = int(getenv("PORT", 80))
    print(f"Starting server on port {port}")
    reload = True if environment == "dev" else False
    uvicorn.run("main:app", host="0.0.0.0", port=port, reload=reload)


# Examples:
# curl -X POST "http://localhost:8001/upload" -F "[email protected]"
# curl -X DELETE "http://localhost:8001/erase_data/"
# curl -X GET "http://localhost:8001/list_files/" 

# hf space is at https://jpbianchi-multirag.hf.space/ 
# code given by https://jpbianchi-multirag.hf.space/docs
# Space must be public
# curl -X POST "https://jpbianchi-multirag.hf.space/upload/" -F "[email protected]"

# curl -X POST http://localhost:80/ask/ -H "Content-Type: application/json" -d '{"question": "what is Amazon loss"}' 
# curl -X POST http://localhost:80/ragit/ -H "Content-Type: application/json" -d '{"question": "Does ATT have postpaid phone customers?"}'
# see more in notebook upload_index.ipynb