tx2videoapi2 / app.py
Bhargavssss's picture
Update app.py
0c551b7 verified
import os
import uuid
from omegaconf import OmegaConf
import spaces
import random
import imageio
import torch
import torchvision
import gradio as gr
import numpy as np
from fastapi import FastAPI
from fastapi.responses import FileResponse
from gradio.components import Textbox, Video
from huggingface_hub import hf_hub_download
from utils.common_utils import load_model_checkpoint
from utils.utils import instantiate_from_config
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline
# Keep all your original constants and DESCRIPTION
MAX_SEED = np.iinfo(np.int32).max
app = FastAPI()
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_video(video_array, video_save_path, fps: int = 16):
video = video_array.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(1, 0, 2, 3) # t,c,h,w
video = (video + 1.0) / 2.0
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
video_save_path, video, fps=fps, video_codec="h264", options={"crf": "10"}
)
# Keep your original example_txt and examples
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(
prompt: str,
guidance_scale: float = 7.5,
percentage: float = 0.5,
num_inference_steps: int = 4,
num_frames: int = 16,
seed: int = 0,
randomize_seed: bool = False,
param_dtype="bf16",
motion_gs: float = 0.05,
fps: int = 8,
is_api: bool = False, # New parameter to handle API calls
):
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
if param_dtype == "bf16":
dtype = torch.bfloat16
unet.dtype = torch.bfloat16
elif param_dtype == "fp16":
dtype = torch.float16
unet.dtype = torch.float16
elif param_dtype == "fp32":
dtype = torch.float32
unet.dtype = torch.float32
else:
raise ValueError(f"Unknown dtype: {param_dtype}")
pipeline.unet.to(device, dtype)
pipeline.text_encoder.to(device, dtype)
pipeline.vae.to(device, dtype)
pipeline.to(device, dtype)
result = pipeline(
prompt=prompt,
frames=num_frames,
fps=fps,
guidance_scale=guidance_scale,
motion_gs=motion_gs,
use_motion_cond=True,
percentage=percentage,
num_inference_steps=num_inference_steps,
lcm_origin_steps=200,
num_videos_per_prompt=1,
)
torch.cuda.empty_cache()
# Generate unique filename for API calls
if is_api:
video_filename = f"{uuid.uuid4()}.mp4"
else:
video_filename = "tmp.mp4"
root_path = "./videos/"
os.makedirs(root_path, exist_ok=True)
video_save_path = os.path.join(root_path, video_filename)
save_video(result[0], video_save_path, fps=fps)
display_model_info = f"Video size: {num_frames}x320x512, Sampling Step: {num_inference_steps}, Guidance Scale: {guidance_scale}"
if is_api:
return {
"video_path": video_save_path,
"prompt": prompt,
"model_info": display_model_info,
"seed": seed
}
return video_save_path, prompt, display_model_info, seed
# API endpoint
@app.post("/generate")
async def generate_api(
prompt: str,
guidance_scale: float = 7.5,
percentage: float = 0.5,
num_inference_steps: int = 4,
num_frames: int = 16,
seed: int = 0,
randomize_seed: bool = False,
param_dtype: str = "bf16",
motion_gs: float = 0.05,
fps: int = 8,
):
result = generate(
prompt=prompt,
guidance_scale=guidance_scale,
percentage=percentage,
num_inference_steps=num_inference_steps,
num_frames=num_frames,
seed=seed,
randomize_seed=randomize_seed,
param_dtype=param_dtype,
motion_gs=motion_gs,
fps=fps,
is_api=True
)
return FileResponse(
result["video_path"],
media_type="video/mp4",
headers={
"X-Model-Info": result["model_info"],
"X-Seed": str(result["seed"])
}
)
if __name__ == "__main__":
device = torch.device("cuda:0")
# Keep all your original model initialization code
config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
model_config = config.pop("model", OmegaConf.create())
pretrained_t2v = instantiate_from_config(model_config)
pretrained_path = hf_hub_download("VideoCrafter/VideoCrafter2", filename="model.ckpt")
pretrained_t2v = load_model_checkpoint(pretrained_t2v, pretrained_path)
unet_config = model_config["params"]["unet_config"]
unet_config["params"]["use_checkpoint"] = False
unet_config["params"]["time_cond_proj_dim"] = 256
unet_config["params"]["motion_cond_proj_dim"] = 256
unet = instantiate_from_config(unet_config)
unet_path = hf_hub_download(repo_id="jiachenli-ucsb/T2V-Turbo-v2", filename="unet_mg.pt")
unet.load_state_dict(torch.load(unet_path, map_location=device))
unet.eval()
pretrained_t2v.model.diffusion_model = unet
scheduler = T2VTurboScheduler(
linear_start=model_config["params"]["linear_start"],
linear_end=model_config["params"]["linear_end"],
)
pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
pipeline.to(device)
# Mount both Gradio and FastAPI
demo = gr.Interface(
fn=lambda *args: generate(*args, is_api=False),
inputs=[
Textbox(label="", placeholder="Please enter your prompt. \n"),
gr.Slider(label="Guidance scale", minimum=2, maximum=14, step=0.1, value=7.5),
gr.Slider(label="Percentage of steps to apply motion guidance", minimum=0.0, maximum=0.5, step=0.05, value=0.5),
gr.Slider(label="Number of inference steps", minimum=4, maximum=50, step=1, value=16),
gr.Slider(label="Number of Video Frames", minimum=16, maximum=48, step=8, value=16),
gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True),
gr.Checkbox(label="Randomize seed", value=True),
gr.Radio(["bf16", "fp16", "fp32"], label="torch.dtype", value="bf16", interactive=True),
],
outputs=[
gr.Video(label="Generated Video", width=512, height=320, interactive=False, autoplay=True),
Textbox(label="input prompt"),
Textbox(label="model info"),
gr.Slider(label="seed"),
],
#description=DESCRIPTION,
#theme=gr.themes.Default(),
#css=block_css,
#examples=examples,
#cache_examples=False,
concurrency_limit=10,
)
app = gr.mount_gradio_app(app, demo, path="/")
# Run both servers
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)