File size: 6,982 Bytes
5bec700
 
 
 
 
 
 
 
 
 
085f4ee
 
5bec700
e13087b
5bec700
 
 
 
 
085f4ee
5bec700
 
085f4ee
5bec700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085f4ee
5bec700
 
 
 
 
 
 
 
 
 
 
 
 
 
085f4ee
5bec700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085f4ee
 
 
 
 
 
 
5bec700
 
085f4ee
5bec700
 
 
085f4ee
 
 
 
 
 
 
 
5bec700
 
085f4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bec700
 
 
 
085f4ee
5bec700
 
 
e13087b
 
 
5bec700
 
 
 
 
 
 
 
e13087b
 
5bec700
 
 
 
 
 
 
 
 
 
085f4ee
5bec700
085f4ee
5bec700
 
085f4ee
 
 
 
 
5bec700
085f4ee
5bec700
 
 
 
 
 
 
0c551b7
 
 
 
 
5bec700
 
085f4ee
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import uuid
from omegaconf import OmegaConf
import spaces
import random
import imageio
import torch
import torchvision
import gradio as gr
import numpy as np
from fastapi import FastAPI
from fastapi.responses import FileResponse
from gradio.components import Textbox, Video
from huggingface_hub import hf_hub_download
from utils.common_utils import load_model_checkpoint
from utils.utils import instantiate_from_config
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline

# Keep all your original constants and DESCRIPTION

MAX_SEED = np.iinfo(np.int32).max
app = FastAPI()

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def save_video(video_array, video_save_path, fps: int = 16):
    video = video_array.detach().cpu()
    video = torch.clamp(video.float(), -1.0, 1.0)
    video = video.permute(1, 0, 2, 3)  # t,c,h,w
    video = (video + 1.0) / 2.0
    video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)

    torchvision.io.write_video(
        video_save_path, video, fps=fps, video_codec="h264", options={"crf": "10"}
    )

# Keep your original example_txt and examples

@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(
    prompt: str,
    guidance_scale: float = 7.5,
    percentage: float = 0.5,
    num_inference_steps: int = 4,
    num_frames: int = 16,
    seed: int = 0,
    randomize_seed: bool = False,
    param_dtype="bf16",
    motion_gs: float = 0.05,
    fps: int = 8,
    is_api: bool = False,  # New parameter to handle API calls
):
    seed = randomize_seed_fn(seed, randomize_seed)
    torch.manual_seed(seed)

    if param_dtype == "bf16":
        dtype = torch.bfloat16
        unet.dtype = torch.bfloat16
    elif param_dtype == "fp16":
        dtype = torch.float16
        unet.dtype = torch.float16
    elif param_dtype == "fp32":
        dtype = torch.float32
        unet.dtype = torch.float32
    else:
        raise ValueError(f"Unknown dtype: {param_dtype}")

    pipeline.unet.to(device, dtype)
    pipeline.text_encoder.to(device, dtype)
    pipeline.vae.to(device, dtype)
    pipeline.to(device, dtype)

    result = pipeline(
        prompt=prompt,
        frames=num_frames,
        fps=fps,
        guidance_scale=guidance_scale,
        motion_gs=motion_gs,
        use_motion_cond=True,
        percentage=percentage,
        num_inference_steps=num_inference_steps,
        lcm_origin_steps=200,
        num_videos_per_prompt=1,
    )

    torch.cuda.empty_cache()
    
    # Generate unique filename for API calls
    if is_api:
        video_filename = f"{uuid.uuid4()}.mp4"
    else:
        video_filename = "tmp.mp4"
        
    root_path = "./videos/"
    os.makedirs(root_path, exist_ok=True)
    video_save_path = os.path.join(root_path, video_filename)

    save_video(result[0], video_save_path, fps=fps)
    display_model_info = f"Video size: {num_frames}x320x512, Sampling Step: {num_inference_steps}, Guidance Scale: {guidance_scale}"
    
    if is_api:
        return {
            "video_path": video_save_path,
            "prompt": prompt,
            "model_info": display_model_info,
            "seed": seed
        }
    return video_save_path, prompt, display_model_info, seed

# API endpoint
@app.post("/generate")
async def generate_api(
    prompt: str,
    guidance_scale: float = 7.5,
    percentage: float = 0.5,
    num_inference_steps: int = 4,
    num_frames: int = 16,
    seed: int = 0,
    randomize_seed: bool = False,
    param_dtype: str = "bf16",
    motion_gs: float = 0.05,
    fps: int = 8,
):
    result = generate(
        prompt=prompt,
        guidance_scale=guidance_scale,
        percentage=percentage,
        num_inference_steps=num_inference_steps,
        num_frames=num_frames,
        seed=seed,
        randomize_seed=randomize_seed,
        param_dtype=param_dtype,
        motion_gs=motion_gs,
        fps=fps,
        is_api=True
    )
    
    return FileResponse(
        result["video_path"],
        media_type="video/mp4",
        headers={
            "X-Model-Info": result["model_info"],
            "X-Seed": str(result["seed"])
        }
    )

if __name__ == "__main__":
    device = torch.device("cuda:0")

    # Keep all your original model initialization code
    config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
    model_config = config.pop("model", OmegaConf.create())
    pretrained_t2v = instantiate_from_config(model_config)

    pretrained_path = hf_hub_download("VideoCrafter/VideoCrafter2", filename="model.ckpt")
    pretrained_t2v = load_model_checkpoint(pretrained_t2v, pretrained_path)
    
    unet_config = model_config["params"]["unet_config"]
    unet_config["params"]["use_checkpoint"] = False
    unet_config["params"]["time_cond_proj_dim"] = 256
    unet_config["params"]["motion_cond_proj_dim"] = 256

    unet = instantiate_from_config(unet_config)

    unet_path = hf_hub_download(repo_id="jiachenli-ucsb/T2V-Turbo-v2", filename="unet_mg.pt")
    unet.load_state_dict(torch.load(unet_path, map_location=device))
    unet.eval()

    pretrained_t2v.model.diffusion_model = unet
    scheduler = T2VTurboScheduler(
        linear_start=model_config["params"]["linear_start"],
        linear_end=model_config["params"]["linear_end"],
    )
    pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
    pipeline.to(device)

    # Mount both Gradio and FastAPI
    demo = gr.Interface(
        fn=lambda *args: generate(*args, is_api=False),
        inputs=[
            Textbox(label="", placeholder="Please enter your prompt. \n"),
            gr.Slider(label="Guidance scale", minimum=2, maximum=14, step=0.1, value=7.5),
            gr.Slider(label="Percentage of steps to apply motion guidance", minimum=0.0, maximum=0.5, step=0.05, value=0.5),
            gr.Slider(label="Number of inference steps", minimum=4, maximum=50, step=1, value=16),
            gr.Slider(label="Number of Video Frames", minimum=16, maximum=48, step=8, value=16),
            gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True),
            gr.Checkbox(label="Randomize seed", value=True),
            gr.Radio(["bf16", "fp16", "fp32"], label="torch.dtype", value="bf16", interactive=True),
        ],
        outputs=[
            gr.Video(label="Generated Video", width=512, height=320, interactive=False, autoplay=True),
            Textbox(label="input prompt"),
            Textbox(label="model info"),
            gr.Slider(label="seed"),
        ],
        #description=DESCRIPTION,
        #theme=gr.themes.Default(),
        #css=block_css,
        #examples=examples,
        #cache_examples=False,
        concurrency_limit=10,
    )
    
    app = gr.mount_gradio_app(app, demo, path="/")
    
    # Run both servers
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)