relation_extraction / relation_extraction.py
Ikala-allen's picture
Update relation_extraction.py
8a998bc
raw
history blame
No virus
10.7 kB
import evaluate
import datasets
import numpy as np
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This metric is used for evaluating the quality of relation extraction output. By calculating the Micro and Macro F1 score of every relation extraction outputs to ensure the quality.
"""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using Precision, Recall, F1 Score.
Args:
predictions (list of list of dictionary): A list of predicted relations from the model.
references (list of list of dictionary): A list of ground-truth or reference relations to compare the predictions against.
Returns:
**output** (`dictionary` of `dictionary`s) A dictionary mapping each entity type to its respective scoring metrics such as Precision, Recall, F1 Score.
- **entity type** (`dictionary`): score of selected relation type
- **tp** : true positive count
- **fp** : false positive count
- **fn** : false negative count
- **p** : precision
- **r** : recall
- **f1** : micro f1 score
- **Macro_f1** : macro f1 score
- **Macro_p** : macro precision
- **Macro_r** : macro recall
Examples:
metric_path = "Ikala-allen/relation_extraction"
module = evaluate.load(metric_path)
references = [
[
{"head": "phipigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
]
]
predictions = [
[
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
]
]
evaluation_scores = module.compute(predictions=predictions, references=references, mode="strict", detailed_scores=False, relation_types=[])
print(evaluation_scores)
{'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
"""
def convert_format(data:list):
"""
Args:
data (list) : list of dictionaries with different entity elements
e.g
[
{'head': ['phipigments', 'tinadaviespigments'...],
'head_type': ['product', 'brand'...],
'type': ['sell', 'sell'...],
'tail': ['國際認證之色乳', '國際認證之色乳'...],
'tail_type': ['product', 'product'...]},
{'head': ['SABONTAIWAN', 'SNTAIWAN'...],
'head_type': ['brand', 'brand'...],
'type': ['sell', 'sell'...],
'tail': ['大馬士革玫瑰有機光燦系列', '大馬士革玫瑰有機光燦系列'...],
'tail_type': ['product', 'product'...]}
...
]
"""
predictions = []
for item in data:
prediction_group = []
for i in range(len(item['head'])):
prediction = {
'head': item['head'][i],
'head_type': item['head_type'][i],
'type': item['type'][i],
'tail': item['tail'][i],
'tail_type': item['tail_type'][i],
}
prediction_group.append(prediction)
predictions.append(prediction_group)
return predictions
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class relation_extraction(evaluate.Metric):
"""evaluating the quality of relation extraction output"""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Sequence({
"head": datasets.Value("string"),
"head_type": datasets.Value("string"),
"type": datasets.Value("string"),
"tail": datasets.Value("string"),
"tail_type": datasets.Value("string"),
}),
'references': datasets.Sequence({
"head": datasets.Value("string"),
"head_type": datasets.Value("string"),
"type": datasets.Value("string"),
"tail": datasets.Value("string"),
"tail_type": datasets.Value("string"),
}),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
pass
def _compute(self, predictions, references, mode, detailed_scores=False, relation_types=[]):
"""
This method computes and returns various scoring metrics for the prediction model based on the mode specified, including Precision, Recall, F1-Score and others. It evaluates the model's predictions against the provided reference data.
Parameters:
predictions: A list of predicted relations from the model.
references: A list of ground-truth or reference relations to compare the predictions against.
mode: Evaluation mode - 'strict' or 'boundaries'. 'strict' mode takes into account both entities type and their relationships
while 'boundaries' mode only considers the entity spans of the relationships.
detailed_scores: Boolean value, if True it returns scores for each relation type specifically,
if False it returns the overall scores.
relation_types: A list of relation types to consider while evaluating. If not provided, relation types will be constructed
from the ground truth or reference data.
Returns:
A dictionary mapping each entity type to its respective scoring metrics such as Precision, Recall, F1 Score.
"""
predictions = convert_format(predictions)
references = convert_format(references)
assert mode in ["strict", "boundaries"]
# construct relation_types from ground truth if not given
if len(relation_types) == 0:
for triplets in references:
for triplet in triplets:
relation = triplet["type"]
if relation not in relation_types:
relation_types.append(relation)
scores = {rel: {"tp": 0, "fp": 0, "fn": 0} for rel in relation_types + ["ALL"]}
# Count GT relations and Predicted relations
n_sents = len(references)
n_rels = sum([len([rel for rel in sent]) for sent in references])
n_found = sum([len([rel for rel in sent]) for sent in predictions])
# Count TP, FP and FN per type
for pred_sent, gt_sent in zip(predictions, references):
for rel_type in relation_types:
# strict mode takes argument types into account
if mode == "strict":
pred_rels = {(rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in pred_sent if
rel["type"] == rel_type}
gt_rels = {(rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in gt_sent if
rel["type"] == rel_type}
# boundaries mode only takes argument spans into account
elif mode == "boundaries":
pred_rels = {(rel["head"], rel["tail"]) for rel in pred_sent if rel["type"] == rel_type}
gt_rels = {(rel["head"], rel["tail"]) for rel in gt_sent if rel["type"] == rel_type}
scores[rel_type]["tp"] += len(pred_rels & gt_rels)
scores[rel_type]["fp"] += len(pred_rels - gt_rels)
scores[rel_type]["fn"] += len(gt_rels - pred_rels)
# Compute per entity Precision / Recall / F1
for rel_type in scores.keys():
if scores[rel_type]["tp"]:
scores[rel_type]["p"] = 100 * scores[rel_type]["tp"] / (scores[rel_type]["fp"] + scores[rel_type]["tp"])
scores[rel_type]["r"] = 100 * scores[rel_type]["tp"] / (scores[rel_type]["fn"] + scores[rel_type]["tp"])
else:
scores[rel_type]["p"], scores[rel_type]["r"] = 0, 0
if not scores[rel_type]["p"] + scores[rel_type]["r"] == 0:
scores[rel_type]["f1"] = 2 * scores[rel_type]["p"] * scores[rel_type]["r"] / (
scores[rel_type]["p"] + scores[rel_type]["r"])
else:
scores[rel_type]["f1"] = 0
# Compute micro F1 Scores
tp = sum([scores[rel_type]["tp"] for rel_type in relation_types])
fp = sum([scores[rel_type]["fp"] for rel_type in relation_types])
fn = sum([scores[rel_type]["fn"] for rel_type in relation_types])
if tp:
precision = 100 * tp / (tp + fp)
recall = 100 * tp / (tp + fn)
f1 = 2 * precision * recall / (precision + recall)
else:
precision, recall, f1 = 0, 0, 0
scores["ALL"]["p"] = precision
scores["ALL"]["r"] = recall
scores["ALL"]["f1"] = f1
scores["ALL"]["tp"] = tp
scores["ALL"]["fp"] = fp
scores["ALL"]["fn"] = fn
# Compute Macro F1 Scores
scores["ALL"]["Macro_f1"] = np.mean([scores[ent_type]["f1"] for ent_type in relation_types])
scores["ALL"]["Macro_p"] = np.mean([scores[ent_type]["p"] for ent_type in relation_types])
scores["ALL"]["Macro_r"] = np.mean([scores[ent_type]["r"] for ent_type in relation_types])
if detailed_scores:
return scores
return scores["ALL"]