File size: 10,667 Bytes
a84678a
 
 
 
cb05f51
a84678a
cb05f51
 
 
 
a84678a
 
 
cb05f51
a84678a
8a998bc
a84678a
 
 
 
8a998bc
a84678a
8a998bc
 
cb05f51
a84678a
8a998bc
 
35a28f9
 
 
 
 
 
 
 
 
a84678a
8a998bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a84678a
 
cb05f51
a84678a
 
 
 
 
 
 
 
 
 
cb05f51
 
a84678a
 
 
 
cb05f51
a84678a
 
8a998bc
a84678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a998bc
a84678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d9145f
 
 
88b0888
5d9145f
 
 
 
 
 
 
 
 
 
 
 
 
 
a84678a
 
88b0888
a84678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d9145f
0c51c37
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import evaluate
import datasets
import numpy as np

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This metric is used for evaluating the quality of relation extraction output. By calculating the Micro and Macro F1 score of every relation extraction outputs to ensure the quality.
"""


_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using Precision, Recall, F1 Score.
Args:
    predictions (list of list of dictionary): A list of predicted relations from the model.
    references (list of list of dictionary): A list of ground-truth or reference relations to compare the predictions against.
    
Returns:
    **output** (`dictionary` of `dictionary`s) A dictionary mapping each entity type to its respective scoring metrics such as Precision, Recall, F1 Score.
- **entity type** (`dictionary`): score of selected relation type
  - **tp** : true positive count
  - **fp** : false positive count
  - **fn** : false negative count
  - **p** : precision
  - **r** : recall
  - **f1** : micro f1 score
  - **Macro_f1** : macro f1 score
  - **Macro_p** : macro precision
  - **Macro_r** : macro recall
Examples:
    metric_path = "Ikala-allen/relation_extraction"
    module = evaluate.load(metric_path)
    references = [
      [
        {"head": "phipigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
        {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
        {'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
      ]
    ]
    predictions = [
      [
        {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
        {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
      ]
    ]
    evaluation_scores = module.compute(predictions=predictions, references=references, mode="strict", detailed_scores=False, relation_types=[])
    print(evaluation_scores)
    {'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
"""


def convert_format(data:list):
    """
    Args:
        data (list) : list of dictionaries with different entity elements
    e.g
        [
        {'head': ['phipigments', 'tinadaviespigments'...], 
        'head_type': ['product', 'brand'...], 
        'type': ['sell', 'sell'...], 
        'tail': ['國際認證之色乳', '國際認證之色乳'...], 
        'tail_type': ['product', 'product'...]}, 

        {'head': ['SABONTAIWAN', 'SNTAIWAN'...], 
        'head_type': ['brand', 'brand'...], 
        'type': ['sell', 'sell'...], 
        'tail': ['大馬士革玫瑰有機光燦系列', '大馬士革玫瑰有機光燦系列'...], 
        'tail_type': ['product', 'product'...]}
        ...
        ]
        
    """
    predictions = []
    for item in data:
        prediction_group = []
        for i in range(len(item['head'])):
            prediction = {
                'head': item['head'][i],
                'head_type': item['head_type'][i],
                'type': item['type'][i],
                'tail': item['tail'][i],
                'tail_type': item['tail_type'][i],
            }
            prediction_group.append(prediction)
        predictions.append(prediction_group)
    return predictions

@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class relation_extraction(evaluate.Metric):
    """evaluating the quality of relation extraction output"""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Sequence({
                    "head": datasets.Value("string"),
                    "head_type": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "tail": datasets.Value("string"),
                    "tail_type": datasets.Value("string"),
                }),
                'references': datasets.Sequence({
                    "head": datasets.Value("string"),
                    "head_type": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "tail": datasets.Value("string"),
                    "tail_type": datasets.Value("string"),
                }),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        pass

    def _compute(self, predictions, references, mode, detailed_scores=False, relation_types=[]):
        """
        This method computes and returns various scoring metrics for the prediction model based on the mode specified, including Precision, Recall, F1-Score and others. It evaluates the model's predictions against the provided reference data. 
        
        Parameters:
            predictions: A list of predicted relations from the model.
            references: A list of ground-truth or reference relations to compare the predictions against.
            mode: Evaluation mode - 'strict' or 'boundaries'. 'strict' mode takes into account both entities type and their relationships
                  while 'boundaries' mode only considers the entity spans of the relationships.
            detailed_scores: Boolean value, if True it returns scores for each relation type specifically, 
                                      if False it returns the overall scores.
            relation_types: A list of relation types to consider while evaluating. If not provided, relation types will be constructed 
                            from the ground truth or reference data.
        
        Returns:
            A dictionary mapping each entity type to its respective scoring metrics such as Precision, Recall, F1 Score.
        """
    
        predictions = convert_format(predictions)
        references = convert_format(references)
        
        assert mode in ["strict", "boundaries"]

        # construct relation_types from ground truth if not given
        if len(relation_types) == 0:
            for triplets in references:
                for triplet in triplets:
                    relation = triplet["type"]
                    if relation not in relation_types:
                        relation_types.append(relation)
        
        scores = {rel: {"tp": 0, "fp": 0, "fn": 0} for rel in relation_types + ["ALL"]}
        
        # Count GT relations and Predicted relations
        n_sents = len(references)
        n_rels = sum([len([rel for rel in sent]) for sent in references])
        n_found = sum([len([rel for rel in sent]) for sent in predictions])

        # Count TP, FP and FN per type
        for pred_sent, gt_sent in zip(predictions, references):
            for rel_type in relation_types:
                # strict mode takes argument types into account
                if mode == "strict":
                    pred_rels = {(rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in pred_sent if
                                rel["type"] == rel_type}
                    gt_rels = {(rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in gt_sent if
                            rel["type"] == rel_type}

                # boundaries mode only takes argument spans into account
                elif mode == "boundaries":
                    pred_rels = {(rel["head"], rel["tail"]) for rel in pred_sent if rel["type"] == rel_type}
                    gt_rels = {(rel["head"], rel["tail"]) for rel in gt_sent if rel["type"] == rel_type}

                scores[rel_type]["tp"] += len(pred_rels & gt_rels)
                scores[rel_type]["fp"] += len(pred_rels - gt_rels)
                scores[rel_type]["fn"] += len(gt_rels - pred_rels)

        # Compute per entity Precision / Recall / F1
        for rel_type in scores.keys():
            if scores[rel_type]["tp"]:
                scores[rel_type]["p"] = 100 * scores[rel_type]["tp"] / (scores[rel_type]["fp"] + scores[rel_type]["tp"])
                scores[rel_type]["r"] = 100 * scores[rel_type]["tp"] / (scores[rel_type]["fn"] + scores[rel_type]["tp"])
            else:
                scores[rel_type]["p"], scores[rel_type]["r"] = 0, 0

            if not scores[rel_type]["p"] + scores[rel_type]["r"] == 0:
                scores[rel_type]["f1"] = 2 * scores[rel_type]["p"] * scores[rel_type]["r"] / (
                        scores[rel_type]["p"] + scores[rel_type]["r"])
            else:
                scores[rel_type]["f1"] = 0

        # Compute micro F1 Scores
        tp = sum([scores[rel_type]["tp"] for rel_type in relation_types])
        fp = sum([scores[rel_type]["fp"] for rel_type in relation_types])
        fn = sum([scores[rel_type]["fn"] for rel_type in relation_types])
        

        if tp:
            precision = 100 * tp / (tp + fp)
            recall = 100 * tp / (tp + fn)
            f1 = 2 * precision * recall / (precision + recall)

        else:
            precision, recall, f1 = 0, 0, 0

        scores["ALL"]["p"] = precision
        scores["ALL"]["r"] = recall
        scores["ALL"]["f1"] = f1
        scores["ALL"]["tp"] = tp
        scores["ALL"]["fp"] = fp
        scores["ALL"]["fn"] = fn


        # Compute Macro F1 Scores
        scores["ALL"]["Macro_f1"] = np.mean([scores[ent_type]["f1"] for ent_type in relation_types])
        scores["ALL"]["Macro_p"] = np.mean([scores[ent_type]["p"] for ent_type in relation_types])
        scores["ALL"]["Macro_r"] = np.mean([scores[ent_type]["r"] for ent_type in relation_types])

        if detailed_scores:
            return scores
            
        return scores["ALL"]