|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
from typing import List, Optional, Union, Dict, Any |
|
|
|
from diffusers import logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from lvdm.models.ddpm3d import LatentDiffusion |
|
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class T2VTurboVC2Pipeline(DiffusionPipeline): |
|
def __init__( |
|
self, |
|
pretrained_t2v: LatentDiffusion, |
|
scheduler: T2VTurboScheduler, |
|
model_config: Dict[str, Any] = None, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
pretrained_t2v=pretrained_t2v, |
|
scheduler=scheduler, |
|
) |
|
self.vae = pretrained_t2v.first_stage_model |
|
self.unet = pretrained_t2v.model.diffusion_model |
|
self.text_encoder = pretrained_t2v.cond_stage_model |
|
|
|
self.model_config = model_config |
|
self.vae_scale_factor = 8 |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
prompt_embeds: None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_videos_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
""" |
|
if prompt_embeds is None: |
|
|
|
prompt_embeds = self.text_encoder(prompt) |
|
|
|
prompt_embeds = prompt_embeds.to(device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view( |
|
bs_embed * num_videos_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
return prompt_embeds |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
frames, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if latents is None: |
|
latents = randn_tensor( |
|
shape, generator=generator, device=device, dtype=dtype |
|
) |
|
else: |
|
latents = latents.to(device) |
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
Args: |
|
timesteps: torch.Tensor: generate embedding vectors at these timesteps |
|
embedding_dim: int: dimension of the embeddings to generate |
|
dtype: data type of the generated embeddings |
|
Returns: |
|
embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = 320, |
|
width: Optional[int] = 512, |
|
frames: int = 16, |
|
fps: int = 16, |
|
guidance_scale: float = 7.5, |
|
motion_gs: float = 0.1, |
|
use_motion_cond: bool = False, |
|
percentage: float = 0.3, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
num_inference_steps: int = 4, |
|
lcm_origin_steps: int = 50, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
): |
|
unet_config = self.model_config["params"]["unet_config"] |
|
|
|
frames = self.pretrained_t2v.temporal_length if frames < 0 else frames |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = unet_config["params"]["in_channels"] |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
bs = batch_size * num_videos_per_prompt |
|
|
|
context = {"context": torch.cat([prompt_embeds.to(self.dtype)], 1), "fps": fps} |
|
|
|
w = torch.tensor(guidance_scale).repeat(bs) |
|
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device) |
|
context["timestep_cond"] = w_embedding.to(self.dtype) |
|
|
|
ms_t_threshold = self.scheduler.config.num_train_timesteps * (1 - percentage) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
ts = torch.full((bs,), t, device=device, dtype=torch.long) |
|
|
|
if use_motion_cond: |
|
motion_gs_pt = torch.tensor(motion_gs).repeat(bs) |
|
if t < ms_t_threshold: |
|
motion_gs_pt = torch.zeros_like(motion_gs_pt) |
|
motion_gs_embedding = self.get_w_embedding( |
|
motion_gs_pt, embedding_dim=256, dtype=self.dtype |
|
).to(device) |
|
context["motion_cond"] = motion_gs_embedding |
|
|
|
|
|
model_pred = self.unet(latents, ts, **context) |
|
|
|
latents, denoised = self.scheduler.step( |
|
model_pred, i, t, latents, generator=generator, return_dict=False |
|
) |
|
|
|
progress_bar.update() |
|
|
|
if not output_type == "latent": |
|
videos = self.pretrained_t2v.decode_first_stage_2DAE(denoised) |
|
else: |
|
videos = denoised |
|
|
|
return videos |
|
|