File size: 8,067 Bytes
5bec700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import torch
from diffusers import DiffusionPipeline
from typing import List, Optional, Union, Dict, Any
from diffusers import logging
from diffusers.utils.torch_utils import randn_tensor
from lvdm.models.ddpm3d import LatentDiffusion
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class T2VTurboVC2Pipeline(DiffusionPipeline):
def __init__(
self,
pretrained_t2v: LatentDiffusion,
scheduler: T2VTurboScheduler,
model_config: Dict[str, Any] = None,
):
super().__init__()
self.register_modules(
pretrained_t2v=pretrained_t2v,
scheduler=scheduler,
)
self.vae = pretrained_t2v.first_stage_model
self.unet = pretrained_t2v.model.diffusion_model
self.text_encoder = pretrained_t2v.cond_stage_model
self.model_config = model_config
self.vae_scale_factor = 8
def _encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
prompt_embeds: None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
"""
if prompt_embeds is None:
prompt_embeds = self.text_encoder(prompt)
prompt_embeds = prompt_embeds.to(device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_videos_per_prompt, seq_len, -1
)
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
return prompt_embeds
def prepare_latents(
self,
batch_size,
num_channels_latents,
frames,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
frames,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
"""
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps: torch.Tensor: generate embedding vectors at these timesteps
embedding_dim: int: dimension of the embeddings to generate
dtype: data type of the generated embeddings
Returns:
embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = 320,
width: Optional[int] = 512,
frames: int = 16,
fps: int = 16,
guidance_scale: float = 7.5,
motion_gs: float = 0.1,
use_motion_cond: bool = False,
percentage: float = 0.3,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
num_inference_steps: int = 4,
lcm_origin_steps: int = 50,
prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
):
unet_config = self.model_config["params"]["unet_config"]
# 0. Default height and width to unet
frames = self.pretrained_t2v.temporal_length if frames < 0 else frames
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_videos_per_prompt,
prompt_embeds=prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variable
num_channels_latents = unet_config["params"]["in_channels"]
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
bs = batch_size * num_videos_per_prompt
context = {"context": torch.cat([prompt_embeds.to(self.dtype)], 1), "fps": fps}
# 6. Get Guidance Scale Embedding
w = torch.tensor(guidance_scale).repeat(bs)
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device)
context["timestep_cond"] = w_embedding.to(self.dtype)
ms_t_threshold = self.scheduler.config.num_train_timesteps * (1 - percentage)
# 7. LCM MultiStep Sampling Loop:
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
ts = torch.full((bs,), t, device=device, dtype=torch.long)
if use_motion_cond:
motion_gs_pt = torch.tensor(motion_gs).repeat(bs)
if t < ms_t_threshold:
motion_gs_pt = torch.zeros_like(motion_gs_pt)
motion_gs_embedding = self.get_w_embedding(
motion_gs_pt, embedding_dim=256, dtype=self.dtype
).to(device)
context["motion_cond"] = motion_gs_embedding
# model prediction (v-prediction, eps, x)
model_pred = self.unet(latents, ts, **context)
# compute the previous noisy sample x_t -> x_t-1
latents, denoised = self.scheduler.step(
model_pred, i, t, latents, generator=generator, return_dict=False
)
progress_bar.update()
if not output_type == "latent":
videos = self.pretrained_t2v.decode_first_stage_2DAE(denoised)
else:
videos = denoised
return videos
|