Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from langchain_community.llms import LlamaCpp | |
# from langchain.prompts import PromptTemplate | |
# from langchain.chains import LLMChain | |
# from langchain_core.callbacks import StreamingStdOutCallbackHandler | |
# from langchain.retrievers import TFIDFRetriever | |
# from langchain.chains import RetrievalQA | |
# from langchain.memory import ConversationBufferMemory | |
# from langchain_community.chat_models import ChatLlamaCpp | |
# callbacks = [StreamingStdOutCallbackHandler()] | |
# print("creating ll started") | |
# llm = ChatLlamaCpp( | |
# model_path="finbro-v0.1.0-llama-3-8B-instruct-1m.gguf", | |
# n_batch=8, | |
# temperature=0.85, | |
# max_tokens=256, | |
# top_p=0.95, | |
# top_k = 10, | |
# callback_manager=callbacks, | |
# n_ctx=2048, | |
# verbose=True, # Verbose is required to pass to the callback manager | |
# ) | |
# print("creating llm ended") | |
# def greet(question, model_type): | |
# print(f"question is {question}") | |
# if model_type == "With memory": | |
# retriever = TFIDFRetriever.from_texts( | |
# ["Finatial AI"]) | |
# template = """You are the Finiantial expert: | |
# {history} | |
# {context} | |
# ### Instruction: | |
# {question} | |
# ### Input: | |
# ### Response: | |
# """ | |
# prompt1 = PromptTemplate( | |
# input_variables=["history", "context", "question"], | |
# template=template, | |
# ) | |
# llm_chain_model = RetrievalQA.from_chain_type( | |
# llm=llm, | |
# chain_type='stuff', | |
# retriever=retriever, | |
# verbose=False, | |
# chain_type_kwargs={ | |
# "verbose": False, | |
# "prompt": prompt1, | |
# "memory": ConversationBufferMemory( | |
# memory_key="history", | |
# input_key="question"), | |
# } | |
# ) | |
# print("creating model created") | |
# else: | |
# template = """You are the Finiantial expert: | |
# ### Instruction: | |
# {question} | |
# ### Input: | |
# ### Response: | |
# """ | |
# prompt = PromptTemplate(template=template, input_variables=["question"]) | |
# llm_chain_model = LLMChain(prompt=prompt, llm=llm) | |
# out_gen = llm_chain_model.run(question) | |
# print(f"out is: {out_gen}") | |
# return out_gen | |
# demo = gr.Interface(fn=greet, inputs=["text", gr.Dropdown( | |
# ["With memory", "Without memory"], label="Memory status", info="With using memory, the output will be slow but strong" | |
# ),], outputs="text") | |
# demo.launch(debug=True, share=True) | |
import gradio as gr | |
from langchain_community.llms import LlamaCpp | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_core.callbacks import StreamingStdOutCallbackHandler | |
from langchain.retrievers import TFIDFRetriever | |
from langchain.chains import RetrievalQA | |
from langchain.memory import ConversationBufferMemory | |
from langchain_community.chat_models import ChatLlamaCpp | |
callbacks = [StreamingStdOutCallbackHandler()] | |
print("creating ll started") | |
M_NAME = "finbro-v0.1.0-llama-3-8B-instruct-1m.gguf" | |
llm = ChatLlamaCpp( | |
model_path=M_NAME, | |
n_batch=8, | |
temperature=0.85, | |
max_tokens=256, | |
top_p=0.95, | |
top_k = 10, | |
callback_manager=callbacks, | |
n_ctx=2048, | |
verbose=True, # Verbose is required to pass to the callback manager | |
) | |
# print("creating ll ended") | |
def greet(question, model_type): | |
print("prompt started ") | |
print(f"question is {question}") | |
template = """You are the Finiantial expert: | |
### Instruction: | |
{question} | |
### Input: | |
### Response: | |
""" | |
print("test1") | |
prompt = PromptTemplate(template=template, input_variables=["question"]) | |
print("test2") | |
llm_chain_model = LLMChain(prompt=prompt, llm=llm) | |
print("test3") | |
out_gen = llm_chain_model.run(question) | |
print("test4") | |
print(f"out is: {out_gen}") | |
return out_gen | |
demo = gr.Interface(fn=greet, inputs=["text", gr.Dropdown( | |
["Without memory", "With memory"], label="Memory status", info="With using memory, the output will be slow but strong" | |
),], outputs="text") | |
demo.launch(debug=True, share=True) |