findemov3 / app.py
Danielrahmai1991's picture
Update app.py
146db4f verified
raw
history blame
4.32 kB
# import gradio as gr
# from langchain_community.llms import LlamaCpp
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain_core.callbacks import StreamingStdOutCallbackHandler
# from langchain.retrievers import TFIDFRetriever
# from langchain.chains import RetrievalQA
# from langchain.memory import ConversationBufferMemory
# from langchain_community.chat_models import ChatLlamaCpp
# callbacks = [StreamingStdOutCallbackHandler()]
# print("creating ll started")
# llm = ChatLlamaCpp(
# model_path="finbro-v0.1.0-llama-3-8B-instruct-1m.gguf",
# n_batch=8,
# temperature=0.85,
# max_tokens=256,
# top_p=0.95,
# top_k = 10,
# callback_manager=callbacks,
# n_ctx=2048,
# verbose=True, # Verbose is required to pass to the callback manager
# )
# print("creating llm ended")
# def greet(question, model_type):
# print(f"question is {question}")
# if model_type == "With memory":
# retriever = TFIDFRetriever.from_texts(
# ["Finatial AI"])
# template = """You are the Finiantial expert:
# {history}
# {context}
# ### Instruction:
# {question}
# ### Input:
# ### Response:
# """
# prompt1 = PromptTemplate(
# input_variables=["history", "context", "question"],
# template=template,
# )
# llm_chain_model = RetrievalQA.from_chain_type(
# llm=llm,
# chain_type='stuff',
# retriever=retriever,
# verbose=False,
# chain_type_kwargs={
# "verbose": False,
# "prompt": prompt1,
# "memory": ConversationBufferMemory(
# memory_key="history",
# input_key="question"),
# }
# )
# print("creating model created")
# else:
# template = """You are the Finiantial expert:
# ### Instruction:
# {question}
# ### Input:
# ### Response:
# """
# prompt = PromptTemplate(template=template, input_variables=["question"])
# llm_chain_model = LLMChain(prompt=prompt, llm=llm)
# out_gen = llm_chain_model.run(question)
# print(f"out is: {out_gen}")
# return out_gen
# demo = gr.Interface(fn=greet, inputs=["text", gr.Dropdown(
# ["With memory", "Without memory"], label="Memory status", info="With using memory, the output will be slow but strong"
# ),], outputs="text")
# demo.launch(debug=True, share=True)
import gradio as gr
from langchain_community.llms import LlamaCpp
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain.retrievers import TFIDFRetriever
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_models import ChatLlamaCpp
callbacks = [StreamingStdOutCallbackHandler()]
print("creating ll started")
M_NAME = "finbro-v0.1.0-llama-3-8B-instruct-1m.gguf"
llm = ChatLlamaCpp(
model_path=M_NAME,
n_batch=8,
temperature=0.85,
max_tokens=256,
top_p=0.95,
top_k = 10,
callback_manager=callbacks,
n_ctx=2048,
verbose=True, # Verbose is required to pass to the callback manager
)
# print("creating ll ended")
def greet(question, model_type):
print("prompt started ")
print(f"question is {question}")
template = """You are the Finiantial expert:
### Instruction:
{question}
### Input:
### Response:
"""
print("test1")
prompt = PromptTemplate(template=template, input_variables=["question"])
print("test2")
llm_chain_model = LLMChain(prompt=prompt, llm=llm)
print("test3")
out_gen = llm_chain_model.run(question)
print("test4")
print(f"out is: {out_gen}")
return out_gen
demo = gr.Interface(fn=greet, inputs=["text", gr.Dropdown(
["Without memory", "With memory"], label="Memory status", info="With using memory, the output will be slow but strong"
),], outputs="text")
demo.launch(debug=True, share=True)