Danielrahmai1991 commited on
Commit
146db4f
1 Parent(s): dfa17d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -110
app.py CHANGED
@@ -1,90 +1,3 @@
1
- import gradio as gr
2
-
3
- from langchain_community.llms import LlamaCpp
4
- from langchain.prompts import PromptTemplate
5
- from langchain.chains import LLMChain
6
- from langchain_core.callbacks import StreamingStdOutCallbackHandler
7
- from langchain.retrievers import TFIDFRetriever
8
- from langchain.chains import RetrievalQA
9
- from langchain.memory import ConversationBufferMemory
10
-
11
-
12
- callbacks = [StreamingStdOutCallbackHandler()]
13
- print("creating ll started")
14
- llm = LlamaCpp(
15
- model_path="finbrov1.gguf",
16
- temperature=0.75,
17
- max_tokens=100,
18
- top_p=4,
19
- callback_manager=callbacks,
20
- verbose=True, # Verbose is required to pass to the callback manager
21
- )
22
- print("creating ll ended")
23
-
24
-
25
-
26
-
27
-
28
-
29
- def greet(question, model_type):
30
- print(f"question is {question}")
31
- if model_type == "With memory":
32
- retriever = TFIDFRetriever.from_texts(
33
- ["Finatial AI"])
34
-
35
-
36
- template = """You are the Finiantial expert:
37
- {history}
38
- {context}
39
- ### Instruction:
40
- {question}
41
-
42
- ### Input:
43
-
44
-
45
- ### Response:
46
- """
47
-
48
- prompt1 = PromptTemplate(
49
- input_variables=["history", "context", "question"],
50
- template=template,
51
- )
52
-
53
- llm_chain_model = RetrievalQA.from_chain_type(
54
- llm=llm,
55
- chain_type='stuff',
56
- retriever=retriever,
57
- verbose=False,
58
- chain_type_kwargs={
59
- "verbose": False,
60
- "prompt": prompt1,
61
- "memory": ConversationBufferMemory(
62
- memory_key="history",
63
- input_key="question"),
64
- }
65
- )
66
- print("creating model created")
67
- else:
68
- template = """You are the Finiantial expert:
69
- ### Instruction:
70
- {question}
71
- ### Input:
72
- ### Response:
73
- """
74
-
75
- prompt = PromptTemplate(template=template, input_variables=["question"])
76
-
77
- llm_chain_model = LLMChain(prompt=prompt, llm=llm)
78
- out_gen = llm_chain_model.run(question)
79
- print(f"out is: {out_gen}")
80
- return out_gen
81
-
82
- demo = gr.Interface(fn=greet, inputs=["text", gr.Dropdown(
83
- ["With memory", "Without memory"], label="Memory status", info="With using memory, the output will be slow but strong"
84
- ),], outputs="text")
85
- demo.launch(debug=True, share=True)
86
-
87
-
88
  # import gradio as gr
89
 
90
  # from langchain_community.llms import LlamaCpp
@@ -96,11 +9,11 @@ demo.launch(debug=True, share=True)
96
  # from langchain.memory import ConversationBufferMemory
97
  # from langchain_community.chat_models import ChatLlamaCpp
98
 
 
99
  # callbacks = [StreamingStdOutCallbackHandler()]
100
  # print("creating ll started")
101
- # M_NAME = "taddeusb90_finbro-v0.1.0-dolphin-2.9-llama-3-8B-instruct-131k_adapt_basic_model_16bit.gguf"
102
- # llm = LlamaCpp(
103
- # model_path=M_NAME,
104
  # n_batch=8,
105
  # temperature=0.85,
106
  # max_tokens=256,
@@ -110,7 +23,7 @@ demo.launch(debug=True, share=True)
110
  # n_ctx=2048,
111
  # verbose=True, # Verbose is required to pass to the callback manager
112
  # )
113
- # # print("creating ll ended")
114
 
115
 
116
 
@@ -118,29 +31,120 @@ demo.launch(debug=True, share=True)
118
 
119
 
120
  # def greet(question, model_type):
121
- # print("prompt started ")
122
  # print(f"question is {question}")
123
- # template = """You are the Finiantial expert:
124
-
125
- # ### Instruction:
126
- # {question}
127
-
128
- # ### Input:
129
-
130
-
131
- # ### Response:
132
- # """
133
- # print("test1")
134
- # prompt = PromptTemplate(template=template, input_variables=["question"])
135
- # print("test2")
136
- # llm_chain_model = LLMChain(prompt=prompt, llm=llm)
137
- # print("test3")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
  # out_gen = llm_chain_model.run(question)
139
- # print("test4")
140
  # print(f"out is: {out_gen}")
141
  # return out_gen
142
 
143
  # demo = gr.Interface(fn=greet, inputs=["text", gr.Dropdown(
144
- # ["Without memory", "With memory"], label="Memory status", info="With using memory, the output will be slow but strong"
145
  # ),], outputs="text")
146
- # demo.launch(debug=True, share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # import gradio as gr
2
 
3
  # from langchain_community.llms import LlamaCpp
 
9
  # from langchain.memory import ConversationBufferMemory
10
  # from langchain_community.chat_models import ChatLlamaCpp
11
 
12
+
13
  # callbacks = [StreamingStdOutCallbackHandler()]
14
  # print("creating ll started")
15
+ # llm = ChatLlamaCpp(
16
+ # model_path="finbro-v0.1.0-llama-3-8B-instruct-1m.gguf",
 
17
  # n_batch=8,
18
  # temperature=0.85,
19
  # max_tokens=256,
 
23
  # n_ctx=2048,
24
  # verbose=True, # Verbose is required to pass to the callback manager
25
  # )
26
+ # print("creating llm ended")
27
 
28
 
29
 
 
31
 
32
 
33
  # def greet(question, model_type):
 
34
  # print(f"question is {question}")
35
+ # if model_type == "With memory":
36
+ # retriever = TFIDFRetriever.from_texts(
37
+ # ["Finatial AI"])
38
+
39
+
40
+ # template = """You are the Finiantial expert:
41
+ # {history}
42
+ # {context}
43
+ # ### Instruction:
44
+ # {question}
45
+
46
+ # ### Input:
47
+
48
+
49
+ # ### Response:
50
+ # """
51
+
52
+ # prompt1 = PromptTemplate(
53
+ # input_variables=["history", "context", "question"],
54
+ # template=template,
55
+ # )
56
+
57
+ # llm_chain_model = RetrievalQA.from_chain_type(
58
+ # llm=llm,
59
+ # chain_type='stuff',
60
+ # retriever=retriever,
61
+ # verbose=False,
62
+ # chain_type_kwargs={
63
+ # "verbose": False,
64
+ # "prompt": prompt1,
65
+ # "memory": ConversationBufferMemory(
66
+ # memory_key="history",
67
+ # input_key="question"),
68
+ # }
69
+ # )
70
+ # print("creating model created")
71
+ # else:
72
+ # template = """You are the Finiantial expert:
73
+ # ### Instruction:
74
+ # {question}
75
+ # ### Input:
76
+ # ### Response:
77
+ # """
78
+
79
+ # prompt = PromptTemplate(template=template, input_variables=["question"])
80
+
81
+ # llm_chain_model = LLMChain(prompt=prompt, llm=llm)
82
  # out_gen = llm_chain_model.run(question)
 
83
  # print(f"out is: {out_gen}")
84
  # return out_gen
85
 
86
  # demo = gr.Interface(fn=greet, inputs=["text", gr.Dropdown(
87
+ # ["With memory", "Without memory"], label="Memory status", info="With using memory, the output will be slow but strong"
88
  # ),], outputs="text")
89
+ # demo.launch(debug=True, share=True)
90
+
91
+
92
+ import gradio as gr
93
+
94
+ from langchain_community.llms import LlamaCpp
95
+ from langchain.prompts import PromptTemplate
96
+ from langchain.chains import LLMChain
97
+ from langchain_core.callbacks import StreamingStdOutCallbackHandler
98
+ from langchain.retrievers import TFIDFRetriever
99
+ from langchain.chains import RetrievalQA
100
+ from langchain.memory import ConversationBufferMemory
101
+ from langchain_community.chat_models import ChatLlamaCpp
102
+
103
+ callbacks = [StreamingStdOutCallbackHandler()]
104
+ print("creating ll started")
105
+ M_NAME = "finbro-v0.1.0-llama-3-8B-instruct-1m.gguf"
106
+ llm = ChatLlamaCpp(
107
+ model_path=M_NAME,
108
+ n_batch=8,
109
+ temperature=0.85,
110
+ max_tokens=256,
111
+ top_p=0.95,
112
+ top_k = 10,
113
+ callback_manager=callbacks,
114
+ n_ctx=2048,
115
+ verbose=True, # Verbose is required to pass to the callback manager
116
+ )
117
+ # print("creating ll ended")
118
+
119
+
120
+
121
+
122
+
123
+
124
+ def greet(question, model_type):
125
+ print("prompt started ")
126
+ print(f"question is {question}")
127
+ template = """You are the Finiantial expert:
128
+
129
+ ### Instruction:
130
+ {question}
131
+
132
+ ### Input:
133
+
134
+
135
+ ### Response:
136
+ """
137
+ print("test1")
138
+ prompt = PromptTemplate(template=template, input_variables=["question"])
139
+ print("test2")
140
+ llm_chain_model = LLMChain(prompt=prompt, llm=llm)
141
+ print("test3")
142
+ out_gen = llm_chain_model.run(question)
143
+ print("test4")
144
+ print(f"out is: {out_gen}")
145
+ return out_gen
146
+
147
+ demo = gr.Interface(fn=greet, inputs=["text", gr.Dropdown(
148
+ ["Without memory", "With memory"], label="Memory status", info="With using memory, the output will be slow but strong"
149
+ ),], outputs="text")
150
+ demo.launch(debug=True, share=True)