Spaces:
Sleeping
Sleeping
import json | |
import subprocess | |
import time | |
import os | |
os.system("pip install --upgrade pip") | |
os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''') | |
from llama_cpp import Llama | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
llm = None | |
llm_model = None | |
# Download the new model | |
hf_hub_download( | |
repo_id="Cran-May/openbuddy-llama3.2-3b-v23.2-131k-Q5_K_M-GGUF", | |
filename="openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf", | |
local_dir="./models" | |
) | |
def get_messages_formatter_type(model_name): | |
return MessagesFormatterType.LLAMA_3 | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repeat_penalty, | |
): | |
global llm | |
global llm_model | |
chat_template = get_messages_formatter_type(model) | |
if llm is None or llm_model != model: | |
llm = Llama( | |
model_path=f"models/{model}", | |
n_gpu_layers=0, # Adjust based on your GPU | |
n_batch=8192, # Adjust based on your RAM | |
n_ctx=512, # Adjust based on your RAM and desired context length | |
) | |
llm_model = model | |
provider = LlamaCppPythonProvider(llm) | |
agent = LlamaCppAgent( | |
provider, | |
system_prompt=f"{system_message}", | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True | |
) | |
settings = provider.get_provider_default_settings() | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
settings.stream = True | |
messages = BasicChatHistory() | |
for msn in history: | |
user = { | |
'role': Roles.user, | |
'content': msn[0] | |
} | |
assistant = { | |
'role': Roles.assistant, | |
'content': msn[1] | |
} | |
messages.add_message(user) | |
messages.add_message(assistant) | |
start_time = time.time() | |
token_count = 0 | |
stream = agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False | |
) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
token_count += len(output.split()) | |
yield outputs | |
end_time = time.time() | |
latency = end_time - start_time | |
speed = token_count / (end_time - start_time) | |
print(f"Latency: {latency} seconds") | |
print(f"Speed: {speed} tokens/second") | |
description = """<p><center> | |
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a> | |
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages. | |
</center></p> | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown([ | |
"llama-3.2-1b-instruct-q4_k_m.gguf" | |
], | |
value="llama-3.2-1b-instruct-q4_k_m.gguf", | |
label="Model" | |
), | |
gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta. Your capabilities include: | |
1. Complex reasoning and problem-solving | |
2. Multilingual understanding and generation | |
3. Creative and analytical writing | |
4. Code understanding and generation | |
5. Task decomposition and step-by-step guidance | |
6. Summarization and information extraction | |
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses: | |
""", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=0.9, | |
step=0.05, | |
label="Top-p", | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=100, | |
value=1, | |
step=1, | |
label="Top-k", | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition penalty", | |
), | |
], | |
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set( | |
body_background_fill_dark="#16141c", | |
block_background_fill_dark="#16141c", | |
block_border_width="1px", | |
block_title_background_fill_dark="#1e1c26", | |
input_background_fill_dark="#292733", | |
button_secondary_background_fill_dark="#24212b", | |
border_color_accent_dark="#343140", | |
border_color_primary_dark="#343140", | |
background_fill_secondary_dark="#16141c", | |
color_accent_soft_dark="transparent", | |
code_background_fill_dark="#292733", | |
), | |
title="Meta Llama 3.2 (1B)", | |
description=description, | |
chatbot=gr.Chatbot( | |
scale=1, | |
likeable=True, | |
show_copy_button=True | |
), | |
examples=[ | |
["Hello! Can you introduce yourself?"], | |
["What's the capital of France?"], | |
["Can you explain the concept of photosynthesis?"], | |
["Write a short story about a robot learning to paint."], | |
["Explain the difference between machine learning and deep learning."], | |
["Summarize the key points of climate change and its global impact."], | |
["Explain quantum computing to a 10-year-old."], | |
["Design a step-by-step meal plan for someone trying to lose weight and build muscle."] | |
], | |
cache_examples=False, | |
autofocus=False, | |
concurrency_limit=None | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
# 旧版代码-------------------------------- | |
# import gradio as gr | |
# import copy | |
# import random | |
# import os | |
# import requests | |
# import time | |
# import sys | |
# os.system("pip install --upgrade pip") | |
# os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''') | |
# from huggingface_hub import snapshot_download | |
# from llama_cpp import Llama | |
# SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese. | |
# You are good at speaking English and Chinese. | |
# You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information. | |
# You are based on SLIDE model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI. | |
# Let's work this out in a step by step way to be sure we have the right answer.\n''' | |
# SYSTEM_TOKEN = 384 | |
# USER_TOKEN = 2048 | |
# BOT_TOKEN = 3072 | |
# LINEBREAK_TOKEN = 64 | |
# ROLE_TOKENS = { | |
# "User": USER_TOKEN, | |
# "Assistant": BOT_TOKEN, | |
# "system": SYSTEM_TOKEN | |
# } | |
# def get_message_tokens(model, role, content): | |
# message_tokens = model.tokenize(content.encode("utf-8")) | |
# message_tokens.insert(1, ROLE_TOKENS[role]) | |
# message_tokens.insert(2, LINEBREAK_TOKEN) | |
# message_tokens.append(model.token_eos()) | |
# return message_tokens | |
# def get_system_tokens(model): | |
# system_message = {"role": "system", "content": SYSTEM_PROMPT} | |
# return get_message_tokens(model, **system_message) | |
# repo_name = "Cran-May/SLIDE-v2-Q4_K_M-GGUF" | |
# model_name = "slide-v2.Q4_K_M.gguf" | |
# snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) | |
# model = Llama( | |
# model_path=model_name, | |
# n_ctx=4000, | |
# n_parts=1, | |
# ) | |
# max_new_tokens = 2500 | |
# def User(message, history): | |
# new_history = history + [[message, None]] | |
# return "", new_history | |
# def Assistant( | |
# history, | |
# system_prompt, | |
# top_p, | |
# top_k, | |
# temp | |
# ): | |
# tokens = get_system_tokens(model)[:] | |
# tokens.append(LINEBREAK_TOKEN) | |
# for User_message, Assistant_message in history[:-1]: | |
# message_tokens = get_message_tokens(model=model, role="User", content=User_message) | |
# tokens.extend(message_tokens) | |
# if bot_message: | |
# message_tokens = get_message_tokens(model=model, role="Assistant", content=Assistant_message) | |
# tokens.extend(message_tokens) | |
# last_user_message = history[-1][0] | |
# message_tokens = get_message_tokens(model=model, role="User", content=last_user_message,) | |
# tokens.extend(message_tokens) | |
# role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN] | |
# tokens.extend(role_tokens) | |
# generator = model.generate( | |
# tokens, | |
# top_k=top_k, | |
# top_p=top_p, | |
# temp=temp | |
# ) | |
# partial_text = "" | |
# for i, token in enumerate(generator): | |
# if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens): | |
# break | |
# partial_text += model.detokenize([token]).decode("utf-8", "ignore") | |
# history[-1][1] = partial_text | |
# yield history | |
# with gr.Blocks( | |
# theme=gr.themes.Soft() | |
# ) as demo: | |
# gr.Markdown(f"""<h1><center>上师附外-兮辞·析辞-人工智能助理</center></h1>""") | |
# gr.Markdown(value="""欢迎使用! | |
# 这里是一个ChatBot。这是量化版兮辞·析辞的部署。 | |
# SLIDE/兮辞 是一种会话语言模型,由 上师附外 NLPark 团队 在多种类型的语料库上进行训练。 | |
# 本节目由 JWorld & 上海师范大学附属外国语中学 NLPark 赞助播出""") | |
# with gr.Row(): | |
# with gr.Column(scale=5): | |
# chatbot = gr.Chatbot(label="兮辞如是说").style(height=400) | |
# with gr.Row(): | |
# with gr.Column(): | |
# msg = gr.Textbox( | |
# label="来问问兮辞吧……", | |
# placeholder="兮辞折寿中……", | |
# show_label=True, | |
# ).style(container=True) | |
# submit = gr.Button("Submit / 开凹!") | |
# stop = gr.Button("Stop / 全局时空断裂") | |
# clear = gr.Button("Clear / 打扫群内垃圾") | |
# with gr.Accordion(label='进阶设置/Advanced options', open=False): | |
# with gr.Column(min_width=80, scale=1): | |
# with gr.Tab(label="设置参数"): | |
# top_p = gr.Slider( | |
# minimum=0.0, | |
# maximum=1.0, | |
# value=0.9, | |
# step=0.05, | |
# interactive=True, | |
# label="Top-p", | |
# ) | |
# top_k = gr.Slider( | |
# minimum=10, | |
# maximum=100, | |
# value=30, | |
# step=5, | |
# interactive=True, | |
# label="Top-k", | |
# ) | |
# temp = gr.Slider( | |
# minimum=0.0, | |
# maximum=2.0, | |
# value=0.2, | |
# step=0.01, | |
# interactive=True, | |
# label="情感温度" | |
# ) | |
# with gr.Column(): | |
# system_prompt = gr.Textbox(label="系统提示词", placeholder="", value=SYSTEM_PROMPT, interactive=False) | |
# with gr.Row(): | |
# gr.Markdown( | |
# """警告:该模型可能会生成事实上或道德上不正确的文本。NLPark和兮辞对此不承担任何责任。""" | |
# ) | |
# # Pressing Enter | |
# submit_event = msg.submit( | |
# fn=User, | |
# inputs=[msg, chatbot], | |
# outputs=[msg, chatbot], | |
# queue=False, | |
# ).success( | |
# fn=Assistant, | |
# inputs=[ | |
# chatbot, | |
# system_prompt, | |
# top_p, | |
# top_k, | |
# temp | |
# ], | |
# outputs=chatbot, | |
# queue=True, | |
# ) | |
# # Pressing the button | |
# submit_click_event = submit.click( | |
# fn=User, | |
# inputs=[msg, chatbot], | |
# outputs=[msg, chatbot], | |
# queue=False, | |
# ).success( | |
# fn=Assistant, | |
# inputs=[ | |
# chatbot, | |
# system_prompt, | |
# top_p, | |
# top_k, | |
# temp | |
# ], | |
# outputs=chatbot, | |
# queue=True, | |
# ) | |
# # Stop generation | |
# stop.click( | |
# fn=None, | |
# inputs=None, | |
# outputs=None, | |
# cancels=[submit_event, submit_click_event], | |
# queue=False, | |
# ) | |
# # Clear history | |
# clear.click(lambda: None, None, chatbot, queue=False) | |
# demo.queue(max_size=128, concurrency_count=1) | |
# demo.launch() |