File size: 13,301 Bytes
9550b8f
 
a9f41ef
9550b8f
a9f41ef
766da4e
8db6cf3
766da4e
a9f41ef
9550b8f
 
 
 
 
 
a9f41ef
9550b8f
 
a9f41ef
9550b8f
 
 
 
 
 
a9f41ef
9550b8f
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
 
 
 
a9f41ef
9550b8f
 
a9f41ef
9550b8f
a9f41ef
9550b8f
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
 
 
 
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
 
9550b8f
 
 
 
a9f41ef
9550b8f
 
 
 
 
 
a9f41ef
9550b8f
 
a9f41ef
9550b8f
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e53e27f
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
184f581
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
a9f41ef
9550b8f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import json
import subprocess
import time
import os

os.system("pip install --upgrade pip")
os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''')

from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

llm = None
llm_model = None

# Download the new model
hf_hub_download(
    repo_id="Cran-May/openbuddy-llama3.2-3b-v23.2-131k-Q5_K_M-GGUF",
    filename="openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf",
    local_dir="./models"
)

def get_messages_formatter_type(model_name):
    return MessagesFormatterType.LLAMA_3

def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    global llm
    global llm_model
    
    chat_template = get_messages_formatter_type(model)
    
    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            n_gpu_layers=0,  # Adjust based on your GPU
            n_batch=8192,     # Adjust based on your RAM
            n_ctx=512,      # Adjust based on your RAM and desired context length
        )
        llm_model = model
    
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    start_time = time.time()
    token_count = 0

    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        token_count += len(output.split()) 
        yield outputs

    end_time = time.time()
    latency = end_time - start_time
    speed = token_count / (end_time - start_time)
    print(f"Latency: {latency} seconds")
    print(f"Speed: {speed} tokens/second")

description = """<p><center>
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a>

Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.

</center></p>
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
                "llama-3.2-1b-instruct-q4_k_m.gguf"
            ],
            value="llama-3.2-1b-instruct-q4_k_m.gguf",
            label="Model"
        ),
        gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta. Your capabilities include:

1. Complex reasoning and problem-solving
2. Multilingual understanding and generation
3. Creative and analytical writing
4. Code understanding and generation
5. Task decomposition and step-by-step guidance
6. Summarization and information extraction

Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses:
""", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=2.0,
            value=0.9,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=1,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
        body_background_fill_dark="#16141c",
        block_background_fill_dark="#16141c",
        block_border_width="1px",
        block_title_background_fill_dark="#1e1c26",
        input_background_fill_dark="#292733",
        button_secondary_background_fill_dark="#24212b",
        border_color_accent_dark="#343140",
        border_color_primary_dark="#343140",
        background_fill_secondary_dark="#16141c",
        color_accent_soft_dark="transparent",
        code_background_fill_dark="#292733",
    ),
    title="Meta Llama 3.2 (1B)",
    description=description,
    chatbot=gr.Chatbot(
        scale=1, 
        likeable=True,
        show_copy_button=True
    ),
    examples=[
        ["Hello! Can you introduce yourself?"],
        ["What's the capital of France?"],
        ["Can you explain the concept of photosynthesis?"],
        ["Write a short story about a robot learning to paint."],
        ["Explain the difference between machine learning and deep learning."],
        ["Summarize the key points of climate change and its global impact."],
        ["Explain quantum computing to a 10-year-old."],
        ["Design a step-by-step meal plan for someone trying to lose weight and build muscle."]
    ],
    cache_examples=False,
    autofocus=False,
    concurrency_limit=None
)

if __name__ == "__main__":
    demo.launch()
# 旧版代码--------------------------------
# import gradio as gr

# import copy
# import random
# import os
# import requests
# import time
# import sys

# os.system("pip install --upgrade pip")
# os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''')

# from huggingface_hub import snapshot_download
# from llama_cpp import Llama


# SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese.
# You are good at speaking English and Chinese.
# You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information.
# You are based on SLIDE model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI.
# Let's work this out in a step by step way to be sure we have the right answer.\n'''
# SYSTEM_TOKEN = 384
# USER_TOKEN = 2048
# BOT_TOKEN = 3072
# LINEBREAK_TOKEN = 64


# ROLE_TOKENS = {
#     "User": USER_TOKEN,
#     "Assistant": BOT_TOKEN,
#     "system": SYSTEM_TOKEN
# }


# def get_message_tokens(model, role, content):
#     message_tokens = model.tokenize(content.encode("utf-8"))
#     message_tokens.insert(1, ROLE_TOKENS[role])
#     message_tokens.insert(2, LINEBREAK_TOKEN)
#     message_tokens.append(model.token_eos())
#     return message_tokens


# def get_system_tokens(model):
#     system_message = {"role": "system", "content": SYSTEM_PROMPT}
#     return get_message_tokens(model, **system_message)


# repo_name = "Cran-May/SLIDE-v2-Q4_K_M-GGUF"
# model_name = "slide-v2.Q4_K_M.gguf"

# snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)

# model = Llama(
#     model_path=model_name,
#     n_ctx=4000,
#     n_parts=1,
# )

# max_new_tokens = 2500

# def User(message, history):
#     new_history = history + [[message, None]]
#     return "", new_history


# def Assistant(
#     history,
#     system_prompt,
#     top_p,
#     top_k,
#     temp
# ):
#     tokens = get_system_tokens(model)[:]
#     tokens.append(LINEBREAK_TOKEN)

#     for User_message, Assistant_message in history[:-1]:
#         message_tokens = get_message_tokens(model=model, role="User", content=User_message)
#         tokens.extend(message_tokens)
#         if bot_message:
#             message_tokens = get_message_tokens(model=model, role="Assistant", content=Assistant_message)
#             tokens.extend(message_tokens)

#     last_user_message = history[-1][0]
#     message_tokens = get_message_tokens(model=model, role="User", content=last_user_message,)
#     tokens.extend(message_tokens)

#     role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
#     tokens.extend(role_tokens)
#     generator = model.generate(
#         tokens,
#         top_k=top_k,
#         top_p=top_p,
#         temp=temp
#     )

#     partial_text = ""
#     for i, token in enumerate(generator):
#         if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens):
#             break
#         partial_text += model.detokenize([token]).decode("utf-8", "ignore")
#         history[-1][1] = partial_text
#         yield history


# with gr.Blocks(
#     theme=gr.themes.Soft()
# ) as demo:
#     gr.Markdown(f"""<h1><center>上师附外-兮辞·析辞-人工智能助理</center></h1>""")
#     gr.Markdown(value="""欢迎使用!
#         这里是一个ChatBot。这是量化版兮辞·析辞的部署。
#         SLIDE/兮辞 是一种会话语言模型,由 上师附外 NLPark 团队 在多种类型的语料库上进行训练。
#         本节目由 JWorld & 上海师范大学附属外国语中学 NLPark 赞助播出""")
    
#     with gr.Row():
#         with gr.Column(scale=5):
#             chatbot = gr.Chatbot(label="兮辞如是说").style(height=400)
#     with gr.Row():
#         with gr.Column():
#             msg = gr.Textbox(
#                 label="来问问兮辞吧……",
#                 placeholder="兮辞折寿中……",
#                 show_label=True,
#             ).style(container=True)
#             submit = gr.Button("Submit / 开凹!")
#             stop = gr.Button("Stop / 全局时空断裂")
#             clear = gr.Button("Clear / 打扫群内垃圾")
#     with gr.Accordion(label='进阶设置/Advanced options', open=False):
#         with gr.Column(min_width=80, scale=1):
#             with gr.Tab(label="设置参数"):
#                 top_p = gr.Slider(
#                     minimum=0.0,
#                     maximum=1.0,
#                     value=0.9,
#                     step=0.05,
#                     interactive=True,
#                     label="Top-p",
#                 )
#                 top_k = gr.Slider(
#                     minimum=10,
#                     maximum=100,
#                     value=30,
#                     step=5,
#                     interactive=True,
#                     label="Top-k",
#                 )
#                 temp = gr.Slider(
#                     minimum=0.0,
#                     maximum=2.0,
#                     value=0.2,
#                     step=0.01,
#                     interactive=True,
#                     label="情感温度"
#                 )
#         with gr.Column():
#             system_prompt = gr.Textbox(label="系统提示词", placeholder="", value=SYSTEM_PROMPT, interactive=False)
#     with gr.Row():
#         gr.Markdown(
#             """警告:该模型可能会生成事实上或道德上不正确的文本。NLPark和兮辞对此不承担任何责任。"""
#         )


#     # Pressing Enter
#     submit_event = msg.submit(
#         fn=User,
#         inputs=[msg, chatbot],
#         outputs=[msg, chatbot],
#         queue=False,
#     ).success(
#         fn=Assistant,
#         inputs=[
#             chatbot,
#             system_prompt,
#             top_p,
#             top_k,
#             temp
#         ],
#         outputs=chatbot,
#         queue=True,
#     )

#     # Pressing the button
#     submit_click_event = submit.click(
#         fn=User,
#         inputs=[msg, chatbot],
#         outputs=[msg, chatbot],
#         queue=False,
#     ).success(
#         fn=Assistant,
#         inputs=[
#             chatbot,
#             system_prompt,
#             top_p,
#             top_k,
#             temp
#         ],
#         outputs=chatbot,
#         queue=True,
#     )

#     # Stop generation
#     stop.click(
#         fn=None,
#         inputs=None,
#         outputs=None,
#         cancels=[submit_event, submit_click_event],
#         queue=False,
#     )

#     # Clear history
#     clear.click(lambda: None, None, chatbot, queue=False)

# demo.queue(max_size=128, concurrency_count=1)
# demo.launch()