Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from utils import import_model_class_from_model_name_or_path | |
from transformers import AutoTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DDIMScheduler, | |
UNet2DConditionModel, | |
) | |
from accelerate import Accelerator | |
from tqdm.auto import tqdm | |
from utils import sd_prepare_input_decom, save_images | |
import torch.nn.functional as F | |
import itertools | |
from peft import LoraConfig | |
from controller import GroupedCAController, register_attention_disentangled_control, DummyController | |
from utils import image2latent, latent2image | |
import matplotlib.pyplot as plt | |
from utils_mask import check_mask_overlap_torch | |
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') | |
class DEditSDPipeline: | |
def __init__( | |
self, | |
mask_list, | |
mask_label_list, | |
mask_list_2 = None, | |
mask_label_list_2 = None, | |
resolution = 512, | |
num_tokens = 1 | |
): | |
super().__init__() | |
model_id = "CompVis/stable-diffusion-v1-4" | |
self.model_id = model_id | |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", use_fast=False) | |
text_encoder_cls_one = import_model_class_from_model_name_or_path(model_id, subfolder = "text_encoder") | |
self.text_encoder = text_encoder_cls_one.from_pretrained(model_id, subfolder="text_encoder" ).to(device) | |
self.unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet") | |
self.unet.ca_dim = 768 | |
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae") | |
self.scheduler = DDPMScheduler.from_pretrained(model_id , subfolder="scheduler") | |
self.scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=True, | |
rescale_betas_zero_snr = False, | |
) | |
self.mixed_precision = "fp16" | |
self.resolution = resolution | |
self.num_tokens = num_tokens | |
self.mask_list = mask_list | |
self.mask_label_list = mask_label_list | |
notation_token_list = [phrase.split(" ")[-1] for phrase in mask_label_list] | |
placeholder_token_list = ["#"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list)] | |
self.set_string_list, placeholder_token_ids = self.add_tokens(placeholder_token_list) | |
self.min_added_id = min(placeholder_token_ids) | |
self.max_added_id = max(placeholder_token_ids) | |
if mask_list_2 is not None: | |
self.mask_list_2 = mask_list_2 | |
self.mask_label_list_2 = mask_label_list_2 | |
notation_token_list_2 = [phrase.split(" ")[-1] for phrase in mask_label_list_2] | |
placeholder_token_list_2 = ["$"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list_2)] | |
self.set_string_list_2, placeholder_token_ids_2 = self.add_tokens(placeholder_token_list_2) | |
self.max_added_id = max(placeholder_token_ids_2) | |
def add_tokens_text_encoder_random_init(self, placeholder_token, num_tokens=1): | |
# Add the placeholder token in tokenizer | |
placeholder_tokens = [placeholder_token] | |
# add dummy tokens for multi-vector | |
additional_tokens = [] | |
for i in range(1, num_tokens): | |
additional_tokens.append(f"{placeholder_token}_{i}") | |
placeholder_tokens += additional_tokens | |
num_added_tokens = self.tokenizer.add_tokens(placeholder_tokens) # 49408 | |
if num_added_tokens != num_tokens: | |
raise ValueError( | |
f"The tokenizer already contains the token {placeholder_token}. Please pass a different" | |
" `placeholder_token` that is not already in the tokenizer." | |
) | |
placeholder_token_ids = self.tokenizer.convert_tokens_to_ids(placeholder_tokens) | |
self.text_encoder.resize_token_embeddings(len(self.tokenizer)) | |
token_embeds = self.text_encoder.get_input_embeddings().weight.data | |
std, mean = torch.std_mean(token_embeds) | |
with torch.no_grad(): | |
for token_id in placeholder_token_ids: | |
token_embeds[token_id] = torch.randn_like(token_embeds[token_id])*std + mean | |
set_string = " ".join(self.tokenizer.convert_ids_to_tokens(placeholder_token_ids)) | |
return set_string, placeholder_token_ids | |
def add_tokens(self, placeholder_token_list): | |
set_string_list = [] | |
placeholder_token_ids_list = [] | |
for str_idx in range(len(placeholder_token_list)): | |
placeholder_token = placeholder_token_list[str_idx] | |
set_string, placeholder_token_ids = self.add_tokens_text_encoder_random_init(placeholder_token, num_tokens=self.num_tokens) | |
set_string_list.append(set_string) | |
placeholder_token_ids_list.append(placeholder_token_ids) | |
placeholder_token_ids = list(itertools.chain(*placeholder_token_ids_list)) | |
return set_string_list, placeholder_token_ids | |
def train_emb( | |
self, | |
image_gt, | |
set_string_list, | |
gradient_accumulation_steps = 5, | |
embedding_learning_rate = 1e-4, | |
max_emb_train_steps = 100, | |
train_batch_size = 1, | |
): | |
decom_controller = GroupedCAController(mask_list = self.mask_list) | |
register_attention_disentangled_control(self.unet, decom_controller) | |
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps) | |
self.vae.requires_grad_(False) | |
self.unet.requires_grad_(False) | |
self.text_encoder.requires_grad_(True) | |
self.text_encoder.text_model.encoder.requires_grad_(False) | |
self.text_encoder.text_model.final_layer_norm.requires_grad_(False) | |
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
self.unet.to(device, dtype=weight_dtype) | |
self.vae.to(device, dtype=weight_dtype) | |
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()] | |
optimizer = torch.optim.AdamW(trainable_embmat_list_1, lr=embedding_learning_rate) | |
self.text_encoder, optimizer = accelerator.prepare(self.text_encoder, optimizer) | |
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight.data.clone() | |
self.text_encoder.train() | |
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps | |
if accelerator.is_main_process: | |
accelerator.init_trackers("DEdit EmbSteps", config={ | |
"embedding_learning_rate": embedding_learning_rate, | |
"text_embedding_optimization_steps": effective_emb_train_steps, | |
}) | |
global_step = 0 | |
noise_scheduler = self.scheduler | |
progress_bar = tqdm(range(0, effective_emb_train_steps), initial = global_step, desc="EmbSteps") | |
latents0 = image2latent(image_gt, vae = self.vae, dtype = weight_dtype) | |
latents0 = latents0.repeat(train_batch_size, 1, 1, 1) | |
for _ in range(max_emb_train_steps): | |
with accelerator.accumulate(self.text_encoder): | |
latents = latents0.clone().detach() | |
noise = torch.randn_like(latents) | |
bsz = latents.shape[0] | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
timesteps = timesteps.long() | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
encoder_hidden_states_list = sd_prepare_input_decom( | |
set_string_list, | |
self.tokenizer, | |
self.text_encoder, | |
length = 40, | |
bsz = train_batch_size, | |
weight_dtype = weight_dtype | |
) | |
model_pred = self.unet( | |
noisy_latents, | |
timesteps, | |
encoder_hidden_states = encoder_hidden_states_list, | |
).sample | |
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean") | |
accelerator.backward(loss) | |
optimizer.step() | |
optimizer.zero_grad() | |
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool) | |
index_no_updates[self.min_added_id : self.max_added_id + 1] = False | |
with torch.no_grad(): | |
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[ | |
index_no_updates] = orig_embeds_params_1[index_no_updates] | |
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
if global_step >= max_emb_train_steps: | |
break | |
accelerator.wait_for_everyone() | |
accelerator.end_training() | |
self.text_encoder = accelerator.unwrap_model(self.text_encoder).to(dtype = weight_dtype) | |
def train_model( | |
self, | |
image_gt, | |
set_string_list, | |
gradient_accumulation_steps = 5, | |
max_diffusion_train_steps = 100, | |
diffusion_model_learning_rate = 1e-5, | |
train_batch_size = 1, | |
train_full_lora = False, | |
lora_rank = 4, | |
lora_alpha = 4 | |
): | |
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device) | |
self.unet.ca_dim = 768 | |
decom_controller = GroupedCAController(mask_list = self.mask_list) | |
register_attention_disentangled_control(self.unet, decom_controller) | |
mixed_precision = "fp16" | |
accelerator = Accelerator(gradient_accumulation_steps = gradient_accumulation_steps, mixed_precision = mixed_precision) | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
self.vae.requires_grad_(False) | |
self.vae.to(device, dtype=weight_dtype) | |
self.unet.requires_grad_(False) | |
self.unet.train() | |
self.text_encoder.requires_grad_(False) | |
if not train_full_lora: | |
trainable_params_list = [] | |
for _, module in self.unet.named_modules(): | |
module_name = type(module).__name__ | |
if module_name == "Attention": | |
if module.to_k.in_features == self.unet.ca_dim: # this is cross attention: | |
module.to_k.weight.requires_grad = True | |
trainable_params_list.append(module.to_k.weight) | |
if module.to_k.bias is not None: | |
module.to_k.bias.requires_grad = True | |
trainable_params_list.append(module.to_k.bias) | |
module.to_v.weight.requires_grad = True | |
trainable_params_list.append(module.to_v.weight) | |
if module.to_v.bias is not None: | |
module.to_v.bias.requires_grad = True | |
trainable_params_list.append(module.to_v.bias) | |
module.to_q.weight.requires_grad = True | |
trainable_params_list.append(module.to_q.weight) | |
if module.to_q.bias is not None: | |
module.to_q.bias.requires_grad = True | |
trainable_params_list.append(module.to_q.bias) | |
else: | |
unet_lora_config = LoraConfig( | |
r=lora_rank, | |
lora_alpha=lora_alpha, | |
init_lora_weights="gaussian", | |
target_modules=["to_k", "to_q", "to_v", "to_out.0"], | |
) | |
self.unet.add_adapter(unet_lora_config) | |
print("training full parameters using lora!") | |
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters())) | |
self.text_encoder.to(device, dtype=weight_dtype) | |
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate) | |
self.unet, optimizer = accelerator.prepare(self.unet, optimizer) | |
psum2 = sum(p.numel() for p in trainable_params_list) | |
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps | |
if accelerator.is_main_process: | |
accelerator.init_trackers("textual_inversion", config={ | |
"diffusion_model_learning_rate": diffusion_model_learning_rate, | |
"diffusion_model_optimization_steps": effective_diffusion_train_steps, | |
}) | |
global_step = 0 | |
progress_bar = tqdm( range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps") | |
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0" , subfolder="scheduler") | |
latents0 = image2latent(image_gt, vae = self.vae, dtype=weight_dtype) | |
latents0 = latents0.repeat(train_batch_size, 1, 1, 1) | |
with torch.no_grad(): | |
encoder_hidden_states_list = sd_prepare_input_decom( | |
set_string_list, | |
self.tokenizer, | |
self.text_encoder, | |
length = 40, | |
bsz = train_batch_size, | |
weight_dtype = weight_dtype | |
) | |
for _ in range(max_diffusion_train_steps): | |
with accelerator.accumulate(self.unet): | |
latents = latents0.clone().detach() | |
noise = torch.randn_like(latents) | |
bsz = latents.shape[0] | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
timesteps = timesteps.long() | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
model_pred = self.unet( | |
noisy_latents, | |
timesteps, | |
encoder_hidden_states=encoder_hidden_states_list, | |
).sample | |
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean") | |
accelerator.backward(loss) | |
optimizer.step() | |
optimizer.zero_grad() | |
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
if global_step >=max_diffusion_train_steps: | |
break | |
accelerator.wait_for_everyone() | |
accelerator.end_training() | |
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype) | |
def train_emb_2imgs( | |
self, | |
image_gt_1, | |
image_gt_2, | |
set_string_list_1, | |
set_string_list_2, | |
gradient_accumulation_steps = 5, | |
embedding_learning_rate = 1e-4, | |
max_emb_train_steps = 100, | |
train_batch_size = 1, | |
): | |
decom_controller_1 = GroupedCAController(mask_list = self.mask_list) | |
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2) | |
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps) | |
self.vae.requires_grad_(False) | |
self.unet.requires_grad_(False) | |
self.text_encoder.requires_grad_(True) | |
self.text_encoder.text_model.encoder.requires_grad_(False) | |
self.text_encoder.text_model.final_layer_norm.requires_grad_(False) | |
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
self.unet.to(device, dtype=weight_dtype) | |
self.vae.to(device, dtype=weight_dtype) | |
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()] | |
optimizer = torch.optim.AdamW(trainable_embmat_list_1, lr=embedding_learning_rate) | |
self.text_encoder, optimizer= accelerator.prepare(self.text_encoder, optimizer) ### | |
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder) .get_input_embeddings().weight.data.clone() | |
self.text_encoder.train() | |
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps | |
if accelerator.is_main_process: | |
accelerator.init_trackers("EmbFt", config={ | |
"embedding_learning_rate": embedding_learning_rate, | |
"text_embedding_optimization_steps": effective_emb_train_steps, | |
}) | |
global_step = 0 | |
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id , subfolder="scheduler") | |
progress_bar = tqdm(range(0, effective_emb_train_steps),initial=global_step,desc="EmbSteps") | |
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype) | |
latents0_1 = latents0_1.repeat(train_batch_size,1,1,1) | |
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype) | |
latents0_2 = latents0_2.repeat(train_batch_size,1,1,1) | |
for step in range(max_emb_train_steps): | |
with accelerator.accumulate(self.text_encoder): | |
latents_1 = latents0_1.clone().detach() | |
noise_1 = torch.randn_like(latents_1) | |
latents_2 = latents0_2.clone().detach() | |
noise_2 = torch.randn_like(latents_2) | |
bsz = latents_1.shape[0] | |
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device) | |
timesteps_1 = timesteps_1.long() | |
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1) | |
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device) | |
timesteps_2 = timesteps_2.long() | |
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2) | |
register_attention_disentangled_control(self.unet, decom_controller_1) | |
encoder_hidden_states_list_1 = sd_prepare_input_decom( | |
set_string_list_1, | |
self.tokenizer, | |
self.text_encoder, | |
length = 40, | |
bsz = train_batch_size, | |
weight_dtype = weight_dtype | |
) | |
model_pred_1 = self.unet( | |
noisy_latents_1, | |
timesteps_1, | |
encoder_hidden_states=encoder_hidden_states_list_1, | |
).sample | |
register_attention_disentangled_control(self.unet, decom_controller_2) | |
# import pdb; pdb.set_trace() | |
encoder_hidden_states_list_2= sd_prepare_input_decom( | |
set_string_list_2, | |
self.tokenizer, | |
self.text_encoder, | |
length = 40, | |
bsz = train_batch_size, | |
weight_dtype = weight_dtype | |
) | |
model_pred_2 = self.unet( | |
noisy_latents_2, | |
timesteps_2, | |
encoder_hidden_states = encoder_hidden_states_list_2, | |
).sample | |
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean") /2 | |
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean") /2 | |
loss = loss_1 + loss_2 | |
accelerator.backward(loss) | |
optimizer.step() | |
optimizer.zero_grad() | |
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool) | |
index_no_updates[self.min_added_id : self.max_added_id + 1] = False | |
with torch.no_grad(): | |
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[ | |
index_no_updates] = orig_embeds_params_1[index_no_updates] | |
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
if global_step >= max_emb_train_steps: | |
break | |
accelerator.wait_for_everyone() | |
accelerator.end_training() | |
self.text_encoder = accelerator.unwrap_model(self.text_encoder) .to(dtype = weight_dtype) | |
def train_model_2imgs( | |
self, | |
image_gt_1, | |
image_gt_2, | |
set_string_list_1, | |
set_string_list_2, | |
gradient_accumulation_steps = 5, | |
max_diffusion_train_steps = 100, | |
diffusion_model_learning_rate = 1e-5, | |
train_batch_size = 1, | |
train_full_lora = False, | |
lora_rank = 4, | |
lora_alpha = 4 | |
): | |
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device) | |
self.unet.ca_dim = 768 | |
decom_controller_1 = GroupedCAController(mask_list = self.mask_list) | |
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2) | |
mixed_precision = "fp16" | |
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps,mixed_precision=mixed_precision) | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
self.vae.requires_grad_(False) | |
self.vae.to(device, dtype=weight_dtype) | |
self.unet.requires_grad_(False) | |
self.unet.train() | |
self.text_encoder.requires_grad_(False) | |
if not train_full_lora: | |
trainable_params_list = [] | |
for name, module in self.unet.named_modules(): | |
module_name = type(module).__name__ | |
if module_name == "Attention": | |
if module.to_k.in_features == self.unet.ca_dim: # this is cross attention: | |
module.to_k.weight.requires_grad = True | |
trainable_params_list.append(module.to_k.weight) | |
if module.to_k.bias is not None: | |
module.to_k.bias.requires_grad = True | |
trainable_params_list.append(module.to_k.bias) | |
module.to_v.weight.requires_grad = True | |
trainable_params_list.append(module.to_v.weight) | |
if module.to_v.bias is not None: | |
module.to_v.bias.requires_grad = True | |
trainable_params_list.append(module.to_v.bias) | |
module.to_q.weight.requires_grad = True | |
trainable_params_list.append(module.to_q.weight) | |
if module.to_q.bias is not None: | |
module.to_q.bias.requires_grad = True | |
trainable_params_list.append(module.to_q.bias) | |
else: | |
unet_lora_config = LoraConfig( | |
r = lora_rank, | |
lora_alpha = lora_alpha, | |
init_lora_weights="gaussian", | |
target_modules=["to_k", "to_q", "to_v", "to_out.0"], | |
) | |
self.unet.add_adapter(unet_lora_config) | |
print("training full parameters using lora!") | |
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters())) | |
self.text_encoder.to(device, dtype=weight_dtype) | |
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate) | |
self.unet, optimizer = accelerator.prepare(self.unet, optimizer) | |
psum2 = sum(p.numel() for p in trainable_params_list) | |
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps | |
if accelerator.is_main_process: | |
accelerator.init_trackers("ModelFt", config={ | |
"diffusion_model_learning_rate": diffusion_model_learning_rate, | |
"diffusion_model_optimization_steps": effective_diffusion_train_steps, | |
}) | |
global_step = 0 | |
progress_bar = tqdm(range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps") | |
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id, subfolder="scheduler") | |
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype) | |
latents0_1 = latents0_1.repeat(train_batch_size, 1, 1, 1) | |
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype) | |
latents0_2 = latents0_2.repeat(train_batch_size,1, 1, 1) | |
with torch.no_grad(): | |
encoder_hidden_states_list_1 = sd_prepare_input_decom( | |
set_string_list_1, | |
self.tokenizer, | |
self.text_encoder, | |
length = 40, | |
bsz = train_batch_size, | |
weight_dtype = weight_dtype | |
) | |
encoder_hidden_states_list_2 = sd_prepare_input_decom( | |
set_string_list_2, | |
self.tokenizer, | |
self.text_encoder, | |
length = 40, | |
bsz = train_batch_size, | |
weight_dtype = weight_dtype | |
) | |
for _ in range(max_diffusion_train_steps): | |
with accelerator.accumulate(self.unet): | |
latents_1 = latents0_1.clone().detach() | |
noise_1 = torch.randn_like(latents_1) | |
bsz = latents_1.shape[0] | |
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device) | |
timesteps_1 = timesteps_1.long() | |
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1) | |
latents_2 = latents0_2.clone().detach() | |
noise_2 = torch.randn_like(latents_2) | |
bsz = latents_2.shape[0] | |
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device) | |
timesteps_2 = timesteps_2.long() | |
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2) | |
register_attention_disentangled_control(self.unet, decom_controller_1) | |
model_pred_1 = self.unet( | |
noisy_latents_1, | |
timesteps_1, | |
encoder_hidden_states = encoder_hidden_states_list_1, | |
).sample | |
register_attention_disentangled_control(self.unet, decom_controller_2) | |
model_pred_2 = self.unet( | |
noisy_latents_2, | |
timesteps_2, | |
encoder_hidden_states = encoder_hidden_states_list_2, | |
).sample | |
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean") | |
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean") | |
loss = loss_1 + loss_2 | |
accelerator.backward(loss) | |
optimizer.step() | |
optimizer.zero_grad() | |
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
if global_step >=max_diffusion_train_steps: | |
break | |
accelerator.wait_for_everyone() | |
accelerator.end_training() | |
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype) | |
def backward_zT_to_z0_euler_decom( | |
self, | |
zT, | |
cond_emb_list, | |
uncond_emb=None, | |
guidance_scale = 1, | |
num_sampling_steps = 20, | |
cond_controller = None, | |
uncond_controller = None, | |
mask_hard = None, | |
mask_soft = None, | |
orig_image = None, | |
return_intermediate = False, | |
strength = 1 | |
): | |
latent_cur = zT | |
if uncond_emb is None: | |
uncond_emb = torch.zeros(zT.shape[0], 77, self.unet.ca_dim).to(dtype = zT.dtype, device = zT.device) | |
if mask_soft is not None: | |
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype) | |
length = init_latents_orig.shape[-1] | |
noise = torch.randn_like(init_latents_orig) | |
mask_soft = torch.nn.functional.interpolate(mask_soft.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ### | |
if mask_hard is not None: | |
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype) | |
length = init_latents_orig.shape[-1] | |
noise = torch.randn_like(init_latents_orig) | |
mask_hard = torch.nn.functional.interpolate(mask_hard.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ### | |
intermediate_list = [latent_cur.detach()] | |
for i in tqdm(range(num_sampling_steps)): | |
t = self.scheduler.timesteps[i] | |
latent_input = self.scheduler.scale_model_input(latent_cur, t) | |
register_attention_disentangled_control(self.unet, uncond_controller) | |
noise_pred_uncond = self.unet( | |
latent_input, | |
t, | |
encoder_hidden_states=uncond_emb, | |
).sample | |
register_attention_disentangled_control(self.unet, cond_controller) | |
noise_pred_cond = self.unet( | |
latent_input, | |
t, | |
encoder_hidden_states=cond_emb_list, | |
).sample | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
latent_cur = self.scheduler.step(noise_pred, t, latent_cur, generator = None, return_dict=False)[0] | |
if return_intermediate is True: | |
intermediate_list.append(latent_cur) | |
if mask_hard is not None and mask_soft is not None and i <= strength *num_sampling_steps: | |
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) | |
mask = mask_soft.to(latent_cur.device, latent_cur.dtype) + mask_hard.to(latent_cur.device, latent_cur.dtype) | |
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask)) | |
elif mask_hard is not None and mask_soft is not None and i > strength *num_sampling_steps: | |
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) | |
mask = mask_hard.to(latent_cur.device, latent_cur.dtype) | |
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask)) | |
elif mask_hard is None and mask_soft is not None and i <= strength *num_sampling_steps: | |
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) | |
mask = mask_soft.to(latent_cur.device, latent_cur.dtype) | |
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask)) | |
elif mask_hard is None and mask_soft is not None and i > strength *num_sampling_steps: | |
pass | |
elif mask_hard is not None and mask_soft is None: | |
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) | |
mask = mask_hard.to(latent_cur.dtype) | |
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask)) | |
else: # hard and soft are both none | |
pass | |
if return_intermediate is True: | |
return latent_cur, intermediate_list | |
else: | |
return latent_cur | |
def sampling( | |
self, | |
set_string_list, | |
cond_controller = None, | |
uncond_controller = None, | |
guidance_scale = 7, | |
num_sampling_steps = 20, | |
mask_hard = None, | |
mask_soft = None, | |
orig_image = None, | |
strength = 1., | |
num_imgs = 1, | |
normal_token_id_list = [], | |
seed = 1 | |
): | |
weight_dtype = torch.float16 | |
self.scheduler.set_timesteps(num_sampling_steps) | |
self.unet.to(device, dtype=weight_dtype) | |
self.vae.to(device, dtype=weight_dtype) | |
self.text_encoder.to(device, dtype=weight_dtype) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
zT = torch.randn(num_imgs, 4, self.resolution//vae_scale_factor,self.resolution//vae_scale_factor).to(device,dtype=weight_dtype) | |
zT = zT * self.scheduler.init_noise_sigma | |
cond_emb_list = sd_prepare_input_decom( | |
set_string_list, | |
self.tokenizer, | |
self.text_encoder, | |
length = 40, | |
bsz = num_imgs, | |
weight_dtype = weight_dtype, | |
normal_token_id_list = normal_token_id_list | |
) | |
z0 = self.backward_zT_to_z0_euler_decom(zT, cond_emb_list, | |
guidance_scale = guidance_scale, num_sampling_steps = num_sampling_steps, | |
cond_controller = cond_controller, uncond_controller = uncond_controller, | |
mask_hard = mask_hard, mask_soft = mask_soft, orig_image = orig_image, strength = strength | |
) | |
x0 = latent2image(z0, vae = self.vae) | |
return x0 | |
def inference_with_mask( | |
self, | |
save_path, | |
guidance_scale = 3, | |
num_sampling_steps = 50, | |
strength = 1, | |
mask_soft = None, | |
mask_hard= None, | |
orig_image=None, | |
mask_list = None, | |
num_imgs = 1, | |
seed = 1, | |
set_string_list = None | |
): | |
if mask_list is not None: | |
mask_list = [m.to(device) for m in mask_list] | |
else: | |
mask_list = self.mask_list | |
if set_string_list is not None: | |
self.set_string_list = set_string_list | |
if mask_hard is not None and mask_soft is not None: | |
check_mask_overlap_torch(mask_hard, mask_soft) | |
null_controller = DummyController() | |
decom_controller = GroupedCAController(mask_list = mask_list) | |
x0 = self.sampling( | |
self.set_string_list, | |
guidance_scale = guidance_scale, | |
num_sampling_steps = num_sampling_steps, | |
strength = strength, | |
cond_controller = decom_controller, | |
uncond_controller = null_controller, | |
mask_soft = mask_soft, | |
mask_hard = mask_hard, | |
orig_image = orig_image, | |
num_imgs = num_imgs, | |
seed = seed | |
) | |
save_images(x0, save_path) | |
from PIL import Image | |
return Image.open("example_tmp/text/out_text_0.png") | |