Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- .gitignore +1 -0
- app copy 2.py +0 -385
- app copy.py +0 -350
- app.py +64 -55
- main copy.py +0 -480
- main.py +3 -2
- pipeline_dedit_sd.py +2 -2
.gitignore
CHANGED
@@ -5,6 +5,7 @@ example1_example2_1024/
|
|
5 |
example1/
|
6 |
old/
|
7 |
example_tmp/
|
|
|
8 |
|
9 |
out_active.png
|
10 |
out_mask.png
|
|
|
5 |
example1/
|
6 |
old/
|
7 |
example_tmp/
|
8 |
+
z_*
|
9 |
|
10 |
out_active.png
|
11 |
out_mask.png
|
app copy 2.py
DELETED
@@ -1,385 +0,0 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
-
import copy
|
4 |
-
from PIL import Image
|
5 |
-
import matplotlib
|
6 |
-
import numpy as np
|
7 |
-
import gradio as gr
|
8 |
-
from utils import load_mask, load_mask_edit
|
9 |
-
from utils_mask import process_mask_to_follow_priority, mask_union, visualize_mask_list_clean
|
10 |
-
from pathlib import Path
|
11 |
-
import subprocess
|
12 |
-
from PIL import Image
|
13 |
-
from functools import partial
|
14 |
-
from main import run_main
|
15 |
-
LENGTH=512 #length of the square area displaying/editing images
|
16 |
-
TRANSPARENCY = 150 # transparency of the mask in display
|
17 |
-
|
18 |
-
def add_mask(mask_np_list_updated, mask_label_list):
|
19 |
-
mask_new = np.zeros_like(mask_np_list_updated[0])
|
20 |
-
mask_np_list_updated.append(mask_new)
|
21 |
-
mask_label_list.append("new")
|
22 |
-
return mask_np_list_updated, mask_label_list
|
23 |
-
|
24 |
-
def create_segmentation(mask_np_list):
|
25 |
-
viridis = matplotlib.pyplot.get_cmap(name = 'viridis', lut = len(mask_np_list))
|
26 |
-
segmentation = 0
|
27 |
-
for i, m in enumerate(mask_np_list):
|
28 |
-
color = matplotlib.colors.to_rgb(viridis(i))
|
29 |
-
color_mat = np.ones_like(m)
|
30 |
-
color_mat = np.stack([color_mat*color[0], color_mat*color[1],color_mat*color[2] ], axis = 2)
|
31 |
-
color_mat = color_mat * m[:,:,np.newaxis]
|
32 |
-
segmentation += color_mat
|
33 |
-
segmentation = Image.fromarray(np.uint8(segmentation*255))
|
34 |
-
return segmentation
|
35 |
-
|
36 |
-
def load_mask_ui(input_folder="example_tmp",load_edit = False):
|
37 |
-
if not load_edit:
|
38 |
-
mask_list, mask_label_list = load_mask(input_folder)
|
39 |
-
else:
|
40 |
-
mask_list, mask_label_list = load_mask_edit(input_folder)
|
41 |
-
|
42 |
-
mask_np_list = []
|
43 |
-
for m in mask_list:
|
44 |
-
mask_np_list. append( m.cpu().numpy())
|
45 |
-
|
46 |
-
return mask_np_list, mask_label_list
|
47 |
-
|
48 |
-
def load_image_ui(load_edit, input_folder="example_tmp"):
|
49 |
-
try:
|
50 |
-
for img_path in Path(input_folder).iterdir():
|
51 |
-
if img_path.name in ["img_512.png"]:
|
52 |
-
image = Image.open(img_path)
|
53 |
-
mask_np_list, mask_label_list = load_mask_ui(input_folder, load_edit = load_edit)
|
54 |
-
image = image.convert('RGB')
|
55 |
-
segmentation = create_segmentation(mask_np_list)
|
56 |
-
print("!!", len(mask_np_list))
|
57 |
-
return image, segmentation, mask_np_list, mask_label_list, image
|
58 |
-
except:
|
59 |
-
print("Image folder invalid: The folder should contain image.png")
|
60 |
-
return None, None, None, None, None
|
61 |
-
|
62 |
-
def run_edit_text(
|
63 |
-
num_tokens,
|
64 |
-
num_sampling_steps,
|
65 |
-
strength,
|
66 |
-
edge_thickness,
|
67 |
-
tgt_prompt,
|
68 |
-
tgt_idx,
|
69 |
-
guidance_scale,
|
70 |
-
input_folder="example_tmp"
|
71 |
-
):
|
72 |
-
subprocess.run(["python",
|
73 |
-
"main.py" ,
|
74 |
-
"--text",
|
75 |
-
"--name={}".format(input_folder),
|
76 |
-
"--dpm={}".format("sd"),
|
77 |
-
"--resolution={}".format(512),
|
78 |
-
"--load_trained",
|
79 |
-
"--num_tokens={}".format(num_tokens),
|
80 |
-
"--seed={}".format(2024),
|
81 |
-
"--guidance_scale={}".format(guidance_scale),
|
82 |
-
"--num_sampling_step={}".format(num_sampling_steps),
|
83 |
-
"--strength={}".format(strength),
|
84 |
-
"--edge_thickness={}".format(edge_thickness),
|
85 |
-
"--num_imgs={}".format(2),
|
86 |
-
"--tgt_prompt={}".format(tgt_prompt) ,
|
87 |
-
"--tgt_index={}".format(tgt_idx)
|
88 |
-
])
|
89 |
-
|
90 |
-
return Image.open(os.path.join(input_folder, "text", "out_text_0.png"))
|
91 |
-
|
92 |
-
|
93 |
-
def run_optimization(
|
94 |
-
num_tokens,
|
95 |
-
embedding_learning_rate,
|
96 |
-
max_emb_train_steps,
|
97 |
-
diffusion_model_learning_rate,
|
98 |
-
max_diffusion_train_steps,
|
99 |
-
train_batch_size,
|
100 |
-
gradient_accumulation_steps,
|
101 |
-
input_folder = "example_tmp"
|
102 |
-
):
|
103 |
-
subprocess.run(["python",
|
104 |
-
"main.py" ,
|
105 |
-
"--name={}".format(input_folder),
|
106 |
-
"--dpm={}".format("sd"),
|
107 |
-
"--resolution={}".format(512),
|
108 |
-
"--num_tokens={}".format(num_tokens),
|
109 |
-
"--embedding_learning_rate={}".format(embedding_learning_rate),
|
110 |
-
"--diffusion_model_learning_rate={}".format(diffusion_model_learning_rate),
|
111 |
-
"--max_emb_train_steps={}".format(max_emb_train_steps),
|
112 |
-
"--max_diffusion_train_steps={}".format(max_diffusion_train_steps),
|
113 |
-
"--train_batch_size={}".format(train_batch_size),
|
114 |
-
"--gradient_accumulation_steps={}".format(gradient_accumulation_steps)
|
115 |
-
|
116 |
-
])
|
117 |
-
return
|
118 |
-
|
119 |
-
|
120 |
-
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
|
121 |
-
backimg_solid_np = np.array(backimg)
|
122 |
-
bimg = backimg.copy()
|
123 |
-
fimg = foreimg.copy()
|
124 |
-
fimg.putalpha(transparency)
|
125 |
-
bimg.paste(fimg, (0,0), fimg)
|
126 |
-
|
127 |
-
bimg_np = np.array(bimg)
|
128 |
-
mask_np = mask_np[:,:,np.newaxis]
|
129 |
-
|
130 |
-
try:
|
131 |
-
new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
|
132 |
-
return Image.fromarray(new_img_np)
|
133 |
-
except:
|
134 |
-
import pdb; pdb.set_trace()
|
135 |
-
|
136 |
-
def show_segmentation(image, segmentation, flag):
|
137 |
-
if flag is False:
|
138 |
-
flag = True
|
139 |
-
mask_np = np.ones([image.size[0],image.size[1]]).astype(np.uint8)
|
140 |
-
image_edit = transparent_paste_with_mask(image, segmentation, mask_np ,transparency = TRANSPARENCY)
|
141 |
-
return image_edit, flag
|
142 |
-
else:
|
143 |
-
flag = False
|
144 |
-
return image,flag
|
145 |
-
|
146 |
-
def edit_mask_add(canvas, image, idx, mask_np_list):
|
147 |
-
mask_sel = mask_np_list[idx]
|
148 |
-
mask_new = np.uint8(canvas["mask"][:, :, 0]/ 255.)
|
149 |
-
mask_np_list_updated = []
|
150 |
-
for midx, m in enumerate(mask_np_list):
|
151 |
-
if midx == idx:
|
152 |
-
mask_np_list_updated.append(mask_union(mask_sel, mask_new))
|
153 |
-
else:
|
154 |
-
mask_np_list_updated.append(m)
|
155 |
-
|
156 |
-
priority_list = [0 for _ in range(len(mask_np_list_updated))]
|
157 |
-
priority_list[idx] = 1
|
158 |
-
mask_np_list_updated = process_mask_to_follow_priority(mask_np_list_updated, priority_list)
|
159 |
-
mask_ones = np.ones([mask_sel.shape[0], mask_sel.shape[1]]).astype(np.uint8)
|
160 |
-
segmentation = create_segmentation(mask_np_list_updated)
|
161 |
-
image_edit = transparent_paste_with_mask(image, segmentation, mask_ones ,transparency = TRANSPARENCY)
|
162 |
-
return mask_np_list_updated, image_edit
|
163 |
-
|
164 |
-
def slider_release(index, image, mask_np_list_updated, mask_label_list):
|
165 |
-
|
166 |
-
if index > len(mask_np_list_updated):
|
167 |
-
return image, "out of range"
|
168 |
-
else:
|
169 |
-
mask_np = mask_np_list_updated[index]
|
170 |
-
mask_label = mask_label_list[index]
|
171 |
-
segmentation = create_segmentation(mask_np_list_updated)
|
172 |
-
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
|
173 |
-
return new_image, mask_label
|
174 |
-
|
175 |
-
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
|
176 |
-
try:
|
177 |
-
assert np.all(sum(mask_np_list_updated)==1)
|
178 |
-
except:
|
179 |
-
print("please check mask")
|
180 |
-
# plt.imsave( "out_mask.png", mask_list_edit[0])
|
181 |
-
import pdb; pdb.set_trace()
|
182 |
-
|
183 |
-
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
|
184 |
-
# np.save(os.path.join(input_folder, "maskEDIT{}_{}.npy".format(midx, mask_label)),mask )
|
185 |
-
np.save(os.path.join(input_folder, "mask{}_{}.npy".format(midx, mask_label)),mask )
|
186 |
-
savepath = os.path.join(input_folder, "seg_current.png")
|
187 |
-
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
188 |
-
|
189 |
-
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
|
190 |
-
try:
|
191 |
-
assert np.all(sum(mask_np_list_updated)==1)
|
192 |
-
except:
|
193 |
-
print("please check mask")
|
194 |
-
# plt.imsave( "out_mask.png", mask_list_edit[0])
|
195 |
-
import pdb; pdb.set_trace()
|
196 |
-
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
|
197 |
-
np.save(os.path.join(input_folder, "maskEdited{}_{}.npy".format(midx, mask_label)), mask)
|
198 |
-
savepath = os.path.join(input_folder, "seg_edited.png")
|
199 |
-
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
200 |
-
|
201 |
-
|
202 |
-
import shutil
|
203 |
-
if os.path.isdir("./example_tmp"):
|
204 |
-
shutil.rmtree("./example_tmp")
|
205 |
-
|
206 |
-
from segment import run_segmentation
|
207 |
-
with gr.Blocks() as demo:
|
208 |
-
image = gr.State() # store mask
|
209 |
-
image_loaded = gr.State()
|
210 |
-
segmentation = gr.State()
|
211 |
-
|
212 |
-
mask_np_list = gr.State([])
|
213 |
-
mask_label_list = gr.State([])
|
214 |
-
mask_np_list_updated = gr.State([])
|
215 |
-
true = gr.State(True)
|
216 |
-
false = gr.State(False)
|
217 |
-
|
218 |
-
with gr.Row():
|
219 |
-
gr.Markdown("""# D-Edit""")
|
220 |
-
|
221 |
-
with gr.Tab(label="1 Edit mask"):
|
222 |
-
with gr.Row():
|
223 |
-
with gr.Column():
|
224 |
-
canvas = gr.Image(value = "./img.png", type="numpy", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
225 |
-
|
226 |
-
segment_button = gr.Button("1.1 Run segmentation")
|
227 |
-
segment_button.click(run_segmentation,
|
228 |
-
[canvas] ,
|
229 |
-
[] )
|
230 |
-
|
231 |
-
text_button = gr.Button("1.2 Load original masks")
|
232 |
-
text_button.click(load_image_ui,
|
233 |
-
[ false] ,
|
234 |
-
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
235 |
-
|
236 |
-
load_edit_button = gr.Button("1.2 Load edited masks")
|
237 |
-
load_edit_button.click(load_image_ui,
|
238 |
-
[ true] ,
|
239 |
-
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
240 |
-
|
241 |
-
show_segment = gr.Checkbox(label = "Show Segmentation")
|
242 |
-
flag = gr.State(False)
|
243 |
-
show_segment.select(show_segmentation,
|
244 |
-
[image_loaded, segmentation, flag],
|
245 |
-
[canvas, flag])
|
246 |
-
|
247 |
-
# mask_np_list_updated.value = copy.deepcopy(mask_np_list.value) #!!
|
248 |
-
mask_np_list_updated = mask_np_list
|
249 |
-
with gr.Column():
|
250 |
-
gr.Markdown("""<p style="text-align: center; font-size: 20px">Draw Mask</p>""")
|
251 |
-
slider = gr.Slider(0, 20, step=1, interactive=True)
|
252 |
-
label = gr.Textbox()
|
253 |
-
slider.release(slider_release,
|
254 |
-
inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],
|
255 |
-
outputs= [canvas, label]
|
256 |
-
)
|
257 |
-
add_button = gr.Button("Add")
|
258 |
-
add_button.click( edit_mask_add,
|
259 |
-
[canvas, image_loaded, slider, mask_np_list_updated] ,
|
260 |
-
[mask_np_list_updated, canvas]
|
261 |
-
)
|
262 |
-
|
263 |
-
save_button2 = gr.Button("Set and Save as edited masks")
|
264 |
-
save_button2.click( save_as_edit_mask,
|
265 |
-
[mask_np_list_updated, mask_label_list] ,
|
266 |
-
[] )
|
267 |
-
|
268 |
-
save_button = gr.Button("Set and Save as original masks")
|
269 |
-
save_button.click( save_as_orig_mask,
|
270 |
-
[mask_np_list_updated, mask_label_list] ,
|
271 |
-
[] )
|
272 |
-
|
273 |
-
back_button = gr.Button("Back to current seg")
|
274 |
-
back_button.click( load_mask_ui,
|
275 |
-
[] ,
|
276 |
-
[ mask_np_list_updated,mask_label_list] )
|
277 |
-
|
278 |
-
add_mask_button = gr.Button("Add new empty mask")
|
279 |
-
add_mask_button.click(add_mask,
|
280 |
-
[mask_np_list_updated, mask_label_list] ,
|
281 |
-
[mask_np_list_updated, mask_label_list] )
|
282 |
-
|
283 |
-
with gr.Tab(label="2 Optimization"):
|
284 |
-
with gr.Row():
|
285 |
-
|
286 |
-
with gr.Column():
|
287 |
-
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
288 |
-
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
289 |
-
embedding_learning_rate = gr.Textbox(value="0.0001", label="Embedding optimization: Learning rate", interactive= True )
|
290 |
-
max_emb_train_steps = gr.Number(value="200", label="embedding optimization: Training steps", interactive= True )
|
291 |
-
|
292 |
-
diffusion_model_learning_rate = gr.Textbox(value="0.00005", label="UNet Optimization: Learning rate", interactive= True )
|
293 |
-
max_diffusion_train_steps = gr.Number(value="200", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
294 |
-
|
295 |
-
train_batch_size = gr.Number(value="5", label="Batch size", interactive= True )
|
296 |
-
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
|
297 |
-
|
298 |
-
add_button = gr.Button("Run optimization")
|
299 |
-
def run_optimization_wrapper (
|
300 |
-
num_tokens,
|
301 |
-
embedding_learning_rate ,
|
302 |
-
max_emb_train_steps ,
|
303 |
-
diffusion_model_learning_rate ,
|
304 |
-
max_diffusion_train_steps,
|
305 |
-
train_batch_size,
|
306 |
-
gradient_accumulation_steps
|
307 |
-
):
|
308 |
-
run_optimization = partial(
|
309 |
-
run_main,
|
310 |
-
num_tokens=int(num_tokens),
|
311 |
-
embedding_learning_rate = float(embedding_learning_rate),
|
312 |
-
max_emb_train_steps = int(max_emb_train_steps),
|
313 |
-
diffusion_model_learning_rate= float(diffusion_model_learning_rate),
|
314 |
-
max_diffusion_train_steps = int(max_diffusion_train_steps),
|
315 |
-
train_batch_size=int(train_batch_size),
|
316 |
-
gradient_accumulation_steps=int(gradient_accumulation_steps)
|
317 |
-
)
|
318 |
-
run_optimization()
|
319 |
-
|
320 |
-
add_button.click(run_optimization_wrapper,
|
321 |
-
inputs = [
|
322 |
-
num_tokens,
|
323 |
-
embedding_learning_rate ,
|
324 |
-
max_emb_train_steps ,
|
325 |
-
diffusion_model_learning_rate ,
|
326 |
-
max_diffusion_train_steps,
|
327 |
-
train_batch_size,
|
328 |
-
gradient_accumulation_steps
|
329 |
-
],
|
330 |
-
outputs = []
|
331 |
-
)
|
332 |
-
|
333 |
-
|
334 |
-
with gr.Tab(label="3 Editing"):
|
335 |
-
with gr.Tab(label="3.1 Text-based editing"):
|
336 |
-
|
337 |
-
with gr.Row():
|
338 |
-
with gr.Column():
|
339 |
-
canvas_text_edit = gr.Image(value = None, type = "pil", label="Editing results", show_label=True)
|
340 |
-
# canvas_text_edit = gr.Gallery(label = "Edited results")
|
341 |
-
|
342 |
-
with gr.Column():
|
343 |
-
gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""")
|
344 |
-
|
345 |
-
tgt_prompt = gr.Textbox(value="White bag", label="Editing: Text prompt", interactive= True )
|
346 |
-
tgt_index = gr.Number(value="0", label="Editing: Object index", interactive= True )
|
347 |
-
guidance_scale = gr.Textbox(value="6", label="Editing: CFG guidance scale", interactive= True )
|
348 |
-
num_sampling_steps = gr.Number(value="50", label="Editing: Sampling steps", interactive= True )
|
349 |
-
edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
|
350 |
-
strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
|
351 |
-
|
352 |
-
add_button = gr.Button("Run Editing")
|
353 |
-
run_edit_text = partial(
|
354 |
-
run_main,
|
355 |
-
load_trained=True,
|
356 |
-
text=True,
|
357 |
-
num_tokens = int(num_tokens.value),
|
358 |
-
guidance_scale = float(guidance_scale.value),
|
359 |
-
num_sampling_steps = int(num_sampling_steps.value),
|
360 |
-
strength = float(strength.value),
|
361 |
-
edge_thickness = int(edge_thickness.value),
|
362 |
-
num_imgs = 1,
|
363 |
-
tgt_prompt = tgt_prompt.value,
|
364 |
-
tgt_index = int(tgt_index.value)
|
365 |
-
)
|
366 |
-
|
367 |
-
add_button.click(run_edit_text,
|
368 |
-
inputs = [],
|
369 |
-
outputs = [canvas_text_edit]
|
370 |
-
)
|
371 |
-
|
372 |
-
def load_pil_img():
|
373 |
-
from PIL import Image
|
374 |
-
return Image.open("example_tmp/text/out_text_0.png")
|
375 |
-
|
376 |
-
load_button = gr.Button("Load results")
|
377 |
-
load_button.click(load_pil_img,
|
378 |
-
inputs = [],
|
379 |
-
outputs = [canvas_text_edit]
|
380 |
-
)
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
demo.queue().launch(share=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app copy.py
DELETED
@@ -1,350 +0,0 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
-
import copy
|
4 |
-
from PIL import Image
|
5 |
-
import matplotlib
|
6 |
-
import numpy as np
|
7 |
-
import gradio as gr
|
8 |
-
from utils import load_mask, load_mask_edit
|
9 |
-
from utils_mask import process_mask_to_follow_priority, mask_union, visualize_mask_list_clean
|
10 |
-
from pathlib import Path
|
11 |
-
import subprocess
|
12 |
-
from PIL import Image
|
13 |
-
|
14 |
-
LENGTH=512 #length of the square area displaying/editing images
|
15 |
-
TRANSPARENCY = 150 # transparency of the mask in display
|
16 |
-
|
17 |
-
def add_mask(mask_np_list_updated, mask_label_list):
|
18 |
-
mask_new = np.zeros_like(mask_np_list_updated[0])
|
19 |
-
mask_np_list_updated.append(mask_new)
|
20 |
-
mask_label_list.append("new")
|
21 |
-
return mask_np_list_updated, mask_label_list
|
22 |
-
|
23 |
-
def create_segmentation(mask_np_list):
|
24 |
-
viridis = matplotlib.pyplot.get_cmap(name = 'viridis', lut = len(mask_np_list))
|
25 |
-
segmentation = 0
|
26 |
-
for i, m in enumerate(mask_np_list):
|
27 |
-
color = matplotlib.colors.to_rgb(viridis(i))
|
28 |
-
color_mat = np.ones_like(m)
|
29 |
-
color_mat = np.stack([color_mat*color[0], color_mat*color[1],color_mat*color[2] ], axis = 2)
|
30 |
-
color_mat = color_mat * m[:,:,np.newaxis]
|
31 |
-
segmentation += color_mat
|
32 |
-
segmentation = Image.fromarray(np.uint8(segmentation*255))
|
33 |
-
return segmentation
|
34 |
-
|
35 |
-
def load_mask_ui(input_folder,load_edit = False):
|
36 |
-
if not load_edit:
|
37 |
-
mask_list, mask_label_list = load_mask(input_folder)
|
38 |
-
else:
|
39 |
-
mask_list, mask_label_list = load_mask_edit(input_folder)
|
40 |
-
|
41 |
-
mask_np_list = []
|
42 |
-
for m in mask_list:
|
43 |
-
mask_np_list. append( m.cpu().numpy())
|
44 |
-
|
45 |
-
return mask_np_list, mask_label_list
|
46 |
-
|
47 |
-
def load_image_ui(input_folder, load_edit):
|
48 |
-
try:
|
49 |
-
for img_path in Path(input_folder).iterdir():
|
50 |
-
if img_path.name in ["img.png", "img_1024.png", "img_512.png"]:
|
51 |
-
image = Image.open(img_path)
|
52 |
-
mask_np_list, mask_label_list = load_mask_ui(input_folder, load_edit = load_edit)
|
53 |
-
image = image.convert('RGB')
|
54 |
-
segmentation = create_segmentation(mask_np_list)
|
55 |
-
return image, segmentation, mask_np_list, mask_label_list, image
|
56 |
-
except:
|
57 |
-
print("Image folder invalid: The folder should contain image.png")
|
58 |
-
return None, None, None, None, None
|
59 |
-
|
60 |
-
def run_segmentation(input_folder):
|
61 |
-
subprocess.run(["python", "segment.py" , "--name={}".format(input_folder)])
|
62 |
-
return
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
def run_edit_text(
|
67 |
-
input_folder,
|
68 |
-
num_tokens,
|
69 |
-
num_sampling_steps,
|
70 |
-
strength,
|
71 |
-
edge_thickness,
|
72 |
-
tgt_prompt,
|
73 |
-
tgt_idx,
|
74 |
-
guidance_scale
|
75 |
-
):
|
76 |
-
subprocess.run(["python",
|
77 |
-
"main.py" ,
|
78 |
-
"--text",
|
79 |
-
"--name={}".format(input_folder),
|
80 |
-
"--dpm={}".format("sd"),
|
81 |
-
"--resolution={}".format(512),
|
82 |
-
"--load_trained",
|
83 |
-
"--num_tokens={}".format(num_tokens),
|
84 |
-
"--seed={}".format(2024),
|
85 |
-
"--guidance_scale={}".format(guidance_scale),
|
86 |
-
"--num_sampling_step={}".format(num_sampling_steps),
|
87 |
-
"--strength={}".format(strength),
|
88 |
-
"--edge_thickness={}".format(edge_thickness),
|
89 |
-
"--num_imgs={}".format(2),
|
90 |
-
"--tgt_prompt={}".format(tgt_prompt) ,
|
91 |
-
"--tgt_index={}".format(tgt_idx)
|
92 |
-
])
|
93 |
-
|
94 |
-
return Image.open(os.path.join(input_folder, "text", "out_text_0.png"))
|
95 |
-
|
96 |
-
|
97 |
-
def run_optimization(
|
98 |
-
input_folder,
|
99 |
-
num_tokens,
|
100 |
-
embedding_learning_rate,
|
101 |
-
max_emb_train_steps,
|
102 |
-
diffusion_model_learning_rate,
|
103 |
-
max_diffusion_train_steps,
|
104 |
-
train_batch_size,
|
105 |
-
gradient_accumulation_steps
|
106 |
-
):
|
107 |
-
subprocess.run(["python",
|
108 |
-
"main.py" ,
|
109 |
-
"--name={}".format(input_folder),
|
110 |
-
"--dpm={}".format("sd"),
|
111 |
-
"--resolution={}".format(512),
|
112 |
-
"--num_tokens={}".format(num_tokens),
|
113 |
-
"--embedding_learning_rate={}".format(embedding_learning_rate),
|
114 |
-
"--diffusion_model_learning_rate={}".format(diffusion_model_learning_rate),
|
115 |
-
"--max_emb_train_steps={}".format(max_emb_train_steps),
|
116 |
-
"--max_diffusion_train_steps={}".format(max_diffusion_train_steps),
|
117 |
-
"--train_batch_size={}".format(train_batch_size),
|
118 |
-
"--gradient_accumulation_steps={}".format(gradient_accumulation_steps)
|
119 |
-
|
120 |
-
])
|
121 |
-
return
|
122 |
-
|
123 |
-
|
124 |
-
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
|
125 |
-
backimg_solid_np = np.array(backimg)
|
126 |
-
bimg = backimg.copy()
|
127 |
-
fimg = foreimg.copy()
|
128 |
-
fimg.putalpha(transparency)
|
129 |
-
bimg.paste(fimg, (0,0), fimg)
|
130 |
-
|
131 |
-
bimg_np = np.array(bimg)
|
132 |
-
mask_np = mask_np[:,:,np.newaxis]
|
133 |
-
try:
|
134 |
-
new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
|
135 |
-
return Image.fromarray(new_img_np)
|
136 |
-
except:
|
137 |
-
import pdb; pdb.set_trace()
|
138 |
-
|
139 |
-
def show_segmentation(image, segmentation, flag):
|
140 |
-
if flag is False:
|
141 |
-
flag = True
|
142 |
-
mask_np = np.ones([image.size[0],image.size[1]]).astype(np.uint8)
|
143 |
-
image_edit = transparent_paste_with_mask(image, segmentation, mask_np ,transparency = TRANSPARENCY)
|
144 |
-
return image_edit, flag
|
145 |
-
else:
|
146 |
-
flag = False
|
147 |
-
return image,flag
|
148 |
-
|
149 |
-
def edit_mask_add(canvas, image, idx, mask_np_list):
|
150 |
-
mask_sel = mask_np_list[idx]
|
151 |
-
mask_new = np.uint8(canvas["mask"][:, :, 0]/ 255.)
|
152 |
-
mask_np_list_updated = []
|
153 |
-
for midx, m in enumerate(mask_np_list):
|
154 |
-
if midx == idx:
|
155 |
-
mask_np_list_updated.append(mask_union(mask_sel, mask_new))
|
156 |
-
else:
|
157 |
-
mask_np_list_updated.append(m)
|
158 |
-
|
159 |
-
priority_list = [0 for _ in range(len(mask_np_list_updated))]
|
160 |
-
priority_list[idx] = 1
|
161 |
-
mask_np_list_updated = process_mask_to_follow_priority(mask_np_list_updated, priority_list)
|
162 |
-
mask_ones = np.ones([mask_sel.shape[0], mask_sel.shape[1]]).astype(np.uint8)
|
163 |
-
segmentation = create_segmentation(mask_np_list_updated)
|
164 |
-
image_edit = transparent_paste_with_mask(image, segmentation, mask_ones ,transparency = TRANSPARENCY)
|
165 |
-
return mask_np_list_updated, image_edit
|
166 |
-
|
167 |
-
def slider_release(index, image, mask_np_list_updated, mask_label_list):
|
168 |
-
if index > len(mask_np_list_updated):
|
169 |
-
return image, "out of range"
|
170 |
-
else:
|
171 |
-
mask_np = mask_np_list_updated[index]
|
172 |
-
mask_label = mask_label_list[index]
|
173 |
-
segmentation = create_segmentation(mask_np_list_updated)
|
174 |
-
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
|
175 |
-
return new_image, mask_label
|
176 |
-
|
177 |
-
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder):
|
178 |
-
try:
|
179 |
-
assert np.all(sum(mask_np_list_updated)==1)
|
180 |
-
except:
|
181 |
-
print("please check mask")
|
182 |
-
# plt.imsave( "out_mask.png", mask_list_edit[0])
|
183 |
-
import pdb; pdb.set_trace()
|
184 |
-
|
185 |
-
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
|
186 |
-
# np.save(os.path.join(input_folder, "maskEDIT{}_{}.npy".format(midx, mask_label)),mask )
|
187 |
-
np.save(os.path.join(input_folder, "mask{}_{}.npy".format(midx, mask_label)),mask )
|
188 |
-
savepath = os.path.join(input_folder, "seg_current.png")
|
189 |
-
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
190 |
-
|
191 |
-
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder):
|
192 |
-
try:
|
193 |
-
assert np.all(sum(mask_np_list_updated)==1)
|
194 |
-
except:
|
195 |
-
print("please check mask")
|
196 |
-
# plt.imsave( "out_mask.png", mask_list_edit[0])
|
197 |
-
import pdb; pdb.set_trace()
|
198 |
-
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
|
199 |
-
np.save(os.path.join(input_folder, "maskEdited{}_{}.npy".format(midx, mask_label)), mask)
|
200 |
-
savepath = os.path.join(input_folder, "seg_edited.png")
|
201 |
-
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
202 |
-
|
203 |
-
with gr.Blocks() as demo:
|
204 |
-
image = gr.State() # store mask
|
205 |
-
image_loaded = gr.State()
|
206 |
-
segmentation = gr.State()
|
207 |
-
|
208 |
-
mask_np_list = gr.State([])
|
209 |
-
mask_label_list = gr.State([])
|
210 |
-
mask_np_list_updated = gr.State([])
|
211 |
-
true = gr.State(True)
|
212 |
-
false = gr.State(False)
|
213 |
-
|
214 |
-
|
215 |
-
with gr.Row():
|
216 |
-
gr.Markdown("""# D-Edit""")
|
217 |
-
|
218 |
-
with gr.Tab(label="1 Edit mask"):
|
219 |
-
with gr.Row():
|
220 |
-
with gr.Column():
|
221 |
-
canvas = gr.Image(value = None, type="numpy", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
222 |
-
input_folder = gr.Textbox(value="example1", label="input folder", interactive= True, )
|
223 |
-
|
224 |
-
segment_button = gr.Button("1.1 Run segmentation")
|
225 |
-
segment_button.click(run_segmentation,
|
226 |
-
[input_folder] ,
|
227 |
-
[] )
|
228 |
-
|
229 |
-
|
230 |
-
text_button = gr.Button("1.2 Load original masks")
|
231 |
-
text_button.click(load_image_ui,
|
232 |
-
[input_folder, false] ,
|
233 |
-
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
234 |
-
|
235 |
-
load_edit_button = gr.Button("1.2 Load edited masks")
|
236 |
-
load_edit_button.click(load_image_ui,
|
237 |
-
[input_folder, true] ,
|
238 |
-
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
239 |
-
|
240 |
-
show_segment = gr.Checkbox(label = "Show Segmentation")
|
241 |
-
|
242 |
-
flag = gr.State(False)
|
243 |
-
show_segment.select(show_segmentation,
|
244 |
-
[image_loaded, segmentation, flag],
|
245 |
-
[canvas, flag])
|
246 |
-
|
247 |
-
mask_np_list_updated = copy.deepcopy(mask_np_list)
|
248 |
-
|
249 |
-
with gr.Column():
|
250 |
-
gr.Markdown("""<p style="text-align: center; font-size: 20px">Draw Mask</p>""")
|
251 |
-
slider = gr.Slider(0, 20, step=1, interactive=True)
|
252 |
-
label = gr.Textbox()
|
253 |
-
slider.release(slider_release,
|
254 |
-
inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],
|
255 |
-
outputs= [canvas, label]
|
256 |
-
)
|
257 |
-
add_button = gr.Button("Add")
|
258 |
-
add_button.click( edit_mask_add,
|
259 |
-
[canvas, image_loaded, slider, mask_np_list_updated] ,
|
260 |
-
[mask_np_list_updated, canvas]
|
261 |
-
)
|
262 |
-
|
263 |
-
save_button2 = gr.Button("Set and Save as edited masks")
|
264 |
-
save_button2.click( save_as_edit_mask,
|
265 |
-
[mask_np_list_updated, mask_label_list, input_folder] ,
|
266 |
-
[] )
|
267 |
-
|
268 |
-
save_button = gr.Button("Set and Save as original masks")
|
269 |
-
save_button.click( save_as_orig_mask,
|
270 |
-
[mask_np_list_updated, mask_label_list, input_folder] ,
|
271 |
-
[] )
|
272 |
-
|
273 |
-
back_button = gr.Button("Back to current seg")
|
274 |
-
back_button.click( load_mask_ui,
|
275 |
-
[input_folder] ,
|
276 |
-
[ mask_np_list_updated,mask_label_list] )
|
277 |
-
|
278 |
-
add_mask_button = gr.Button("Add new empty mask")
|
279 |
-
add_mask_button.click(add_mask,
|
280 |
-
[mask_np_list_updated, mask_label_list] ,
|
281 |
-
[mask_np_list_updated, mask_label_list] )
|
282 |
-
|
283 |
-
with gr.Tab(label="2 Optimization"):
|
284 |
-
with gr.Row():
|
285 |
-
with gr.Column():
|
286 |
-
canvas_opt = gr.Image(value = canvas.value, type="pil", label="Loaded Image", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
287 |
-
|
288 |
-
with gr.Column():
|
289 |
-
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
290 |
-
num_tokens = gr.Textbox(value="5", label="num tokens to represent each object", interactive= True)
|
291 |
-
embedding_learning_rate = gr.Textbox(value="1e-4", label="Embedding optimization: Learning rate", interactive= True )
|
292 |
-
max_emb_train_steps = gr.Textbox(value="500", label="embedding optimization: Training steps", interactive= True )
|
293 |
-
|
294 |
-
diffusion_model_learning_rate = gr.Textbox(value="5e-5", label="UNet Optimization: Learning rate", interactive= True )
|
295 |
-
max_diffusion_train_steps = gr.Textbox(value="500", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
296 |
-
|
297 |
-
train_batch_size = gr.Textbox(value="5", label="Batch size", interactive= True )
|
298 |
-
gradient_accumulation_steps=gr.Textbox(value="5", label="Gradient accumulation", interactive= True )
|
299 |
-
|
300 |
-
add_button = gr.Button("Run optimization")
|
301 |
-
add_button.click(run_optimization,
|
302 |
-
inputs = [
|
303 |
-
input_folder,
|
304 |
-
num_tokens,
|
305 |
-
embedding_learning_rate,
|
306 |
-
max_emb_train_steps,
|
307 |
-
diffusion_model_learning_rate,
|
308 |
-
max_diffusion_train_steps,
|
309 |
-
train_batch_size,gradient_accumulation_steps
|
310 |
-
],
|
311 |
-
outputs = []
|
312 |
-
)
|
313 |
-
|
314 |
-
|
315 |
-
with gr.Tab(label="3 Editing"):
|
316 |
-
with gr.Tab(label="3.1 Text-based editing"):
|
317 |
-
canvas_text_edit = gr.State() # store mask
|
318 |
-
with gr.Row():
|
319 |
-
with gr.Column():
|
320 |
-
canvas_text_edit = gr.Image(value = None, type="pil", label="Editing results", show_label=True, height=LENGTH, width=LENGTH)
|
321 |
-
# canvas_text_edit = gr.Gallery(label = "Edited results")
|
322 |
-
|
323 |
-
with gr.Column():
|
324 |
-
gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""")
|
325 |
-
|
326 |
-
tgt_prompt = gr.Textbox(value="Dog", label="Editing: Text prompt", interactive= True )
|
327 |
-
tgt_idx = gr.Textbox(value="0", label="Editing: Object index", interactive= True )
|
328 |
-
guidance_scale = gr.Textbox(value="6", label="Editing: CFG guidance scale", interactive= True )
|
329 |
-
num_sampling_steps = gr.Textbox(value="50", label="Editing: Sampling steps", interactive= True )
|
330 |
-
edge_thickness = gr.Textbox(value="10", label="Editing: Edge thickness", interactive= True )
|
331 |
-
strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
|
332 |
-
|
333 |
-
add_button = gr.Button("Run Editing")
|
334 |
-
add_button.click(run_edit_text,
|
335 |
-
inputs = [
|
336 |
-
input_folder,
|
337 |
-
num_tokens,
|
338 |
-
num_sampling_steps,
|
339 |
-
strength,
|
340 |
-
edge_thickness,
|
341 |
-
tgt_prompt,
|
342 |
-
tgt_idx,
|
343 |
-
guidance_scale
|
344 |
-
],
|
345 |
-
outputs = []
|
346 |
-
)
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
demo.queue().launch(share=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -59,62 +59,62 @@ def load_image_ui(load_edit, input_folder="example_tmp"):
|
|
59 |
print("Image folder invalid: The folder should contain image.png")
|
60 |
return None, None, None, None, None
|
61 |
|
62 |
-
def run_edit_text(
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
92 |
|
93 |
-
def run_optimization(
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
|
116 |
-
|
117 |
-
|
118 |
|
119 |
|
120 |
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
|
@@ -215,6 +215,7 @@ with gr.Blocks() as demo:
|
|
215 |
true = gr.State(True)
|
216 |
false = gr.State(False)
|
217 |
block_flag = gr.State(0)
|
|
|
218 |
with gr.Row():
|
219 |
gr.Markdown("""# D-Edit""")
|
220 |
|
@@ -293,6 +294,7 @@ with gr.Blocks() as demo:
|
|
293 |
opt_flag = gr.State(0)
|
294 |
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
295 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
|
|
296 |
embedding_learning_rate = gr.Textbox(value="0.0001", label="Embedding optimization: Learning rate", interactive= True )
|
297 |
max_emb_train_steps = gr.Number(value="200", label="embedding optimization: Training steps", interactive= True )
|
298 |
|
@@ -380,7 +382,7 @@ with gr.Blocks() as demo:
|
|
380 |
run_main,
|
381 |
load_trained=True,
|
382 |
text=True,
|
383 |
-
num_tokens = int(
|
384 |
guidance_scale = float(guidance_scale),
|
385 |
num_sampling_steps = int(num_sampling_steps),
|
386 |
strength = float(strength),
|
@@ -391,8 +393,15 @@ with gr.Blocks() as demo:
|
|
391 |
)
|
392 |
return run_edit_text()
|
393 |
|
394 |
-
add_button.click(
|
395 |
-
inputs = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
outputs = [canvas_text_edit]
|
397 |
)
|
398 |
|
|
|
59 |
print("Image folder invalid: The folder should contain image.png")
|
60 |
return None, None, None, None, None
|
61 |
|
62 |
+
# def run_edit_text(
|
63 |
+
# num_tokens,
|
64 |
+
# num_sampling_steps,
|
65 |
+
# strength,
|
66 |
+
# edge_thickness,
|
67 |
+
# tgt_prompt,
|
68 |
+
# tgt_idx,
|
69 |
+
# guidance_scale,
|
70 |
+
# input_folder="example_tmp"
|
71 |
+
# ):
|
72 |
+
# subprocess.run(["python",
|
73 |
+
# "main.py" ,
|
74 |
+
# "--text=True",
|
75 |
+
# "--name={}".format(input_folder),
|
76 |
+
# "--dpm={}".format("sd"),
|
77 |
+
# "--resolution={}".format(512),
|
78 |
+
# "--load_trained",
|
79 |
+
# "--num_tokens={}".format(num_tokens),
|
80 |
+
# "--seed={}".format(2024),
|
81 |
+
# "--guidance_scale={}".format(guidance_scale),
|
82 |
+
# "--num_sampling_step={}".format(num_sampling_steps),
|
83 |
+
# "--strength={}".format(strength),
|
84 |
+
# "--edge_thickness={}".format(edge_thickness),
|
85 |
+
# "--num_imgs={}".format(2),
|
86 |
+
# "--tgt_prompt={}".format(tgt_prompt) ,
|
87 |
+
# "--tgt_index={}".format(tgt_idx)
|
88 |
+
# ])
|
89 |
|
90 |
+
# return Image.open(os.path.join(input_folder, "text", "out_text_0.png"))
|
91 |
|
92 |
|
93 |
+
# def run_optimization(
|
94 |
+
# num_tokens,
|
95 |
+
# embedding_learning_rate,
|
96 |
+
# max_emb_train_steps,
|
97 |
+
# diffusion_model_learning_rate,
|
98 |
+
# max_diffusion_train_steps,
|
99 |
+
# train_batch_size,
|
100 |
+
# gradient_accumulation_steps,
|
101 |
+
# input_folder = "example_tmp"
|
102 |
+
# ):
|
103 |
+
# subprocess.run(["python",
|
104 |
+
# "main.py" ,
|
105 |
+
# "--name={}".format(input_folder),
|
106 |
+
# "--dpm={}".format("sd"),
|
107 |
+
# "--resolution={}".format(512),
|
108 |
+
# "--num_tokens={}".format(num_tokens),
|
109 |
+
# "--embedding_learning_rate={}".format(embedding_learning_rate),
|
110 |
+
# "--diffusion_model_learning_rate={}".format(diffusion_model_learning_rate),
|
111 |
+
# "--max_emb_train_steps={}".format(max_emb_train_steps),
|
112 |
+
# "--max_diffusion_train_steps={}".format(max_diffusion_train_steps),
|
113 |
+
# "--train_batch_size={}".format(train_batch_size),
|
114 |
+
# "--gradient_accumulation_steps={}".format(gradient_accumulation_steps)
|
115 |
|
116 |
+
# ])
|
117 |
+
# return
|
118 |
|
119 |
|
120 |
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
|
|
|
215 |
true = gr.State(True)
|
216 |
false = gr.State(False)
|
217 |
block_flag = gr.State(0)
|
218 |
+
num_tokens_global = gr.State(5)
|
219 |
with gr.Row():
|
220 |
gr.Markdown("""# D-Edit""")
|
221 |
|
|
|
294 |
opt_flag = gr.State(0)
|
295 |
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
296 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
297 |
+
num_tokens_global = num_tokens
|
298 |
embedding_learning_rate = gr.Textbox(value="0.0001", label="Embedding optimization: Learning rate", interactive= True )
|
299 |
max_emb_train_steps = gr.Number(value="200", label="embedding optimization: Training steps", interactive= True )
|
300 |
|
|
|
382 |
run_main,
|
383 |
load_trained=True,
|
384 |
text=True,
|
385 |
+
num_tokens = int(num_tokens_global.value),
|
386 |
guidance_scale = float(guidance_scale),
|
387 |
num_sampling_steps = int(num_sampling_steps),
|
388 |
strength = float(strength),
|
|
|
393 |
)
|
394 |
return run_edit_text()
|
395 |
|
396 |
+
add_button.click(run_edit_text_wrapper,
|
397 |
+
inputs = [num_tokens_global,
|
398 |
+
guidance_scale,
|
399 |
+
num_sampling_steps,
|
400 |
+
strength ,
|
401 |
+
edge_thickness,
|
402 |
+
tgt_prompt ,
|
403 |
+
tgt_index
|
404 |
+
],
|
405 |
outputs = [canvas_text_edit]
|
406 |
)
|
407 |
|
main copy.py
DELETED
@@ -1,480 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import numpy as np
|
4 |
-
import argparse
|
5 |
-
from peft import LoraConfig
|
6 |
-
from old.pipeline_dedit_sdxl import DEditSDXLPipeline
|
7 |
-
from pipeline_dedit_sd import DEditSDPipeline
|
8 |
-
from utils import load_image, load_mask, load_mask_edit
|
9 |
-
from utils_mask import process_mask_move_torch, process_mask_remove_torch, mask_union_torch, mask_substract_torch, create_outer_edge_mask_torch
|
10 |
-
from utils_mask import check_mask_overlap_torch, check_cover_all_torch, visualize_mask_list, get_mask_difference_torch, save_mask_list_to_npys
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
parser.add_argument("--name", type=str,required=True, default=None)
|
14 |
-
parser.add_argument("--name_2", type=str,required=False, default=None)
|
15 |
-
parser.add_argument("--dpm", type=str,required=True, default="sd")
|
16 |
-
parser.add_argument("--resolution", type=int, default=1024)
|
17 |
-
parser.add_argument("--seed", type=int, default=42)
|
18 |
-
parser.add_argument("--embedding_learning_rate", type=float, default=1e-4)
|
19 |
-
parser.add_argument("--max_emb_train_steps", type=int, default=200)
|
20 |
-
parser.add_argument("--diffusion_model_learning_rate", type=float, default=5e-5)
|
21 |
-
parser.add_argument("--max_diffusion_train_steps", type=int, default=200)
|
22 |
-
parser.add_argument("--train_batch_size", type=int, default=1)
|
23 |
-
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
24 |
-
parser.add_argument("--num_tokens", type=int, default=1)
|
25 |
-
|
26 |
-
|
27 |
-
parser.add_argument("--load_trained", default=False, action="store_true" )
|
28 |
-
parser.add_argument("--num_sampling_steps", type=int, default=50)
|
29 |
-
parser.add_argument("--guidance_scale", type=float, default = 3 )
|
30 |
-
parser.add_argument("--strength", type=float, default=0.8)
|
31 |
-
|
32 |
-
parser.add_argument("--train_full_lora", default=False, action="store_true" )
|
33 |
-
parser.add_argument("--lora_rank", type=int, default=4)
|
34 |
-
parser.add_argument("--lora_alpha", type=int, default=4)
|
35 |
-
|
36 |
-
parser.add_argument("--prompt_auxin_list", nargs="+", type=str, default = None)
|
37 |
-
parser.add_argument("--prompt_auxin_idx_list", nargs="+", type=int, default = None)
|
38 |
-
|
39 |
-
# general editing configs
|
40 |
-
parser.add_argument("--load_edited_mask", default=False, action="store_true")
|
41 |
-
parser.add_argument("--load_edited_processed_mask", default=False, action="store_true")
|
42 |
-
parser.add_argument("--edge_thickness", type=int, default=20)
|
43 |
-
parser.add_argument("--num_imgs", type=int, default = 1 )
|
44 |
-
parser.add_argument('--active_mask_list', nargs="+", type=int)
|
45 |
-
parser.add_argument("--tgt_index", type=int, default=None)
|
46 |
-
|
47 |
-
# recon
|
48 |
-
parser.add_argument("--recon", default=False, action="store_true" )
|
49 |
-
parser.add_argument("--recon_an_item", default=False, action="store_true" )
|
50 |
-
parser.add_argument("--recon_prompt", type=str, default=None)
|
51 |
-
|
52 |
-
# text-based editing
|
53 |
-
parser.add_argument("--text", default=False, action="store_true")
|
54 |
-
parser.add_argument("--tgt_prompt", type=str, default=None)
|
55 |
-
|
56 |
-
# image-based editing
|
57 |
-
parser.add_argument("--image", default=False, action="store_true" )
|
58 |
-
parser.add_argument("--src_index", type=int, default=None)
|
59 |
-
parser.add_argument("--tgt_name", type=str, default=None)
|
60 |
-
|
61 |
-
# mask-based move
|
62 |
-
parser.add_argument("--move_resize", default=False, action="store_true" )
|
63 |
-
parser.add_argument('--tgt_indices_list', nargs="+", type=int)
|
64 |
-
parser.add_argument("--delta_x_list", nargs="+", type=int)
|
65 |
-
parser.add_argument("--delta_y_list", nargs="+", type=int)
|
66 |
-
parser.add_argument("--priority_list", nargs="+", type=int)
|
67 |
-
parser.add_argument("--force_mask_remain", type=int, default=None)
|
68 |
-
parser.add_argument("--resize_list", nargs="+", type=float)
|
69 |
-
|
70 |
-
# remove
|
71 |
-
parser.add_argument("--remove", default=False, action="store_true" )
|
72 |
-
parser.add_argument("--load_edited_removemask", default=False, action="store_true")
|
73 |
-
|
74 |
-
args = parser.parse_args()
|
75 |
-
|
76 |
-
|
77 |
-
def run_main(
|
78 |
-
name=None,
|
79 |
-
name_2=None,
|
80 |
-
dpm="sd",
|
81 |
-
resolution=1024,
|
82 |
-
seed=42,
|
83 |
-
embedding_learning_rate=1e-4,
|
84 |
-
max_emb_train_steps=200,
|
85 |
-
diffusion_model_learning_rate=5e-5,
|
86 |
-
max_diffusion_train_steps=200,
|
87 |
-
train_batch_size=1,
|
88 |
-
gradient_accumulation_steps=1,
|
89 |
-
num_tokens=1,
|
90 |
-
|
91 |
-
load_trained="store_true" ,
|
92 |
-
num_sampling_steps=50,
|
93 |
-
guidance_scale= 3 ,
|
94 |
-
strength=0.8,
|
95 |
-
|
96 |
-
train_full_lora="store_true" ,
|
97 |
-
lora_rank=4,
|
98 |
-
lora_alpha=4,
|
99 |
-
|
100 |
-
prompt_auxin_list = None,
|
101 |
-
prompt_auxin_idx_list= None,
|
102 |
-
|
103 |
-
load_edited_mask="store_true",
|
104 |
-
load_edited_processed_mask="store_true",
|
105 |
-
edge_thickness=20,
|
106 |
-
num_imgs= 1 ,
|
107 |
-
active_mask_list = None,
|
108 |
-
tgt_index=None,
|
109 |
-
|
110 |
-
recon=False ,
|
111 |
-
recon_an_item=False,
|
112 |
-
recon_prompt=None,
|
113 |
-
|
114 |
-
text="store_true",
|
115 |
-
tgt_prompt=None,
|
116 |
-
|
117 |
-
image="store_true" ,
|
118 |
-
src_index=None,
|
119 |
-
tgt_name=None,
|
120 |
-
|
121 |
-
move_resize="store_true" ,
|
122 |
-
tgt_indices_list=None,
|
123 |
-
delta_x_list=None,
|
124 |
-
delta_y_list=None,
|
125 |
-
priority_list=None,
|
126 |
-
force_mask_remain=None,
|
127 |
-
resize_list=None,
|
128 |
-
|
129 |
-
remove=False,
|
130 |
-
load_edited_removemask=False
|
131 |
-
):
|
132 |
-
torch.cuda.manual_seed_all(args.seed)
|
133 |
-
torch.manual_seed(args.seed)
|
134 |
-
base_input_folder = "."
|
135 |
-
base_output_folder = "."
|
136 |
-
|
137 |
-
input_folder = os.path.join(base_input_folder, args.name)
|
138 |
-
|
139 |
-
|
140 |
-
mask_list, mask_label_list = load_mask(input_folder)
|
141 |
-
assert mask_list[0].shape[0] == args.resolution, "Segmentation should be done on size {}".format(args.resolution)
|
142 |
-
try:
|
143 |
-
image_gt = load_image(os.path.join(input_folder, "img_{}.png".format(args.resolution) ), size = args.resolution)
|
144 |
-
except:
|
145 |
-
image_gt = load_image(os.path.join(input_folder, "img_{}.jpg".format(args.resolution) ), size = args.resolution)
|
146 |
-
|
147 |
-
if args.image:
|
148 |
-
input_folder_2 = os.path.join(base_input_folder, args.name_2)
|
149 |
-
mask_list_2, mask_label_list_2 = load_mask(input_folder_2)
|
150 |
-
assert mask_list_2[0].shape[0] == args.resolution, "Segmentation should be done on size {}".format(args.resolution)
|
151 |
-
try:
|
152 |
-
image_gt_2 = load_image(os.path.join(input_folder_2, "img_{}.png".format(args.resolution) ), size = args.resolution)
|
153 |
-
except:
|
154 |
-
image_gt_2 = load_image(os.path.join(input_folder_2, "img_{}.jpg".format(args.resolution) ), size = args.resolution)
|
155 |
-
output_dir = os.path.join(base_output_folder, args.name + "_" + args.name_2)
|
156 |
-
os.makedirs(output_dir, exist_ok = True)
|
157 |
-
else:
|
158 |
-
output_dir = os.path.join(base_output_folder, args.name)
|
159 |
-
os.makedirs(output_dir, exist_ok = True)
|
160 |
-
|
161 |
-
if args.dpm == "sd":
|
162 |
-
if args.image:
|
163 |
-
pipe = DEditSDPipeline(mask_list, mask_label_list, mask_list_2, mask_label_list_2, resolution = args.resolution, num_tokens = args.num_tokens)
|
164 |
-
else:
|
165 |
-
pipe = DEditSDPipeline(mask_list, mask_label_list, resolution = args.resolution, num_tokens = args.num_tokens)
|
166 |
-
|
167 |
-
elif args.dpm == "sdxl":
|
168 |
-
if args.image:
|
169 |
-
pipe = DEditSDXLPipeline(mask_list, mask_label_list, mask_list_2, mask_label_list_2, resolution = args.resolution, num_tokens = args.num_tokens)
|
170 |
-
else:
|
171 |
-
pipe = DEditSDXLPipeline(mask_list, mask_label_list, resolution = args.resolution, num_tokens = args.num_tokens)
|
172 |
-
|
173 |
-
else:
|
174 |
-
raise NotImplementedError
|
175 |
-
|
176 |
-
set_string_list = pipe.set_string_list
|
177 |
-
if args.prompt_auxin_list is not None:
|
178 |
-
for auxin_idx, auxin_prompt in zip(args.prompt_auxin_idx_list, args.prompt_auxin_list):
|
179 |
-
set_string_list[auxin_idx] = auxin_prompt.replace("*", set_string_list[auxin_idx] )
|
180 |
-
print(set_string_list)
|
181 |
-
|
182 |
-
if args.image:
|
183 |
-
set_string_list_2 = pipe.set_string_list_2
|
184 |
-
print(set_string_list_2)
|
185 |
-
|
186 |
-
if args.load_trained:
|
187 |
-
unet_save_path = os.path.join(output_dir, "unet.pt")
|
188 |
-
unet_state_dict = torch.load(unet_save_path)
|
189 |
-
text_encoder1_save_path = os.path.join(output_dir, "text_encoder1.pt")
|
190 |
-
text_encoder1_state_dict = torch.load(text_encoder1_save_path)
|
191 |
-
if args.dpm == "sdxl":
|
192 |
-
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
|
193 |
-
text_encoder2_state_dict = torch.load(text_encoder2_save_path)
|
194 |
-
|
195 |
-
if 'lora' in ''.join(unet_state_dict.keys()):
|
196 |
-
unet_lora_config = LoraConfig(
|
197 |
-
r=args.lora_rank,
|
198 |
-
lora_alpha=args.lora_alpha,
|
199 |
-
init_lora_weights="gaussian",
|
200 |
-
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
201 |
-
)
|
202 |
-
pipe.unet.add_adapter(unet_lora_config)
|
203 |
-
|
204 |
-
pipe.unet.load_state_dict(unet_state_dict)
|
205 |
-
pipe.text_encoder.load_state_dict(text_encoder1_state_dict)
|
206 |
-
if args.dpm == "sdxl":
|
207 |
-
pipe.text_encoder_2.load_state_dict(text_encoder2_state_dict)
|
208 |
-
else:
|
209 |
-
if args.image:
|
210 |
-
pipe.mask_list = [m.cuda() for m in pipe.mask_list]
|
211 |
-
pipe.mask_list_2 = [m.cuda() for m in pipe.mask_list_2]
|
212 |
-
pipe.train_emb_2imgs(
|
213 |
-
image_gt,
|
214 |
-
image_gt_2,
|
215 |
-
set_string_list,
|
216 |
-
set_string_list_2,
|
217 |
-
gradient_accumulation_steps = args.gradient_accumulation_steps,
|
218 |
-
embedding_learning_rate = args.embedding_learning_rate,
|
219 |
-
max_emb_train_steps = args.max_emb_train_steps,
|
220 |
-
train_batch_size = args.train_batch_size,
|
221 |
-
)
|
222 |
-
|
223 |
-
pipe.train_model_2imgs(
|
224 |
-
image_gt,
|
225 |
-
image_gt_2,
|
226 |
-
set_string_list,
|
227 |
-
set_string_list_2,
|
228 |
-
gradient_accumulation_steps = args.gradient_accumulation_steps,
|
229 |
-
max_diffusion_train_steps = args.max_diffusion_train_steps,
|
230 |
-
diffusion_model_learning_rate = args.diffusion_model_learning_rate ,
|
231 |
-
train_batch_size =args.train_batch_size,
|
232 |
-
train_full_lora = args.train_full_lora,
|
233 |
-
lora_rank = args.lora_rank,
|
234 |
-
lora_alpha = args.lora_alpha
|
235 |
-
)
|
236 |
-
|
237 |
-
else:
|
238 |
-
pipe.mask_list = [m.cuda() for m in pipe.mask_list]
|
239 |
-
pipe.train_emb(
|
240 |
-
image_gt,
|
241 |
-
set_string_list,
|
242 |
-
gradient_accumulation_steps = args.gradient_accumulation_steps,
|
243 |
-
embedding_learning_rate = args.embedding_learning_rate,
|
244 |
-
max_emb_train_steps = args.max_emb_train_steps,
|
245 |
-
train_batch_size = args.train_batch_size,
|
246 |
-
)
|
247 |
-
|
248 |
-
pipe.train_model(
|
249 |
-
image_gt,
|
250 |
-
set_string_list,
|
251 |
-
gradient_accumulation_steps = args.gradient_accumulation_steps,
|
252 |
-
max_diffusion_train_steps = args.max_diffusion_train_steps,
|
253 |
-
diffusion_model_learning_rate = args.diffusion_model_learning_rate ,
|
254 |
-
train_batch_size = args.train_batch_size,
|
255 |
-
train_full_lora = args.train_full_lora,
|
256 |
-
lora_rank = args.lora_rank,
|
257 |
-
lora_alpha = args.lora_alpha
|
258 |
-
)
|
259 |
-
|
260 |
-
|
261 |
-
unet_save_path = os.path.join(output_dir, "unet.pt")
|
262 |
-
torch.save(pipe.unet.state_dict(),unet_save_path )
|
263 |
-
text_encoder1_save_path = os.path.join(output_dir, "text_encoder1.pt")
|
264 |
-
torch.save(pipe.text_encoder.state_dict(), text_encoder1_save_path)
|
265 |
-
if args.dpm == "sdxl":
|
266 |
-
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
|
267 |
-
torch.save(pipe.text_encoder_2.state_dict(), text_encoder2_save_path )
|
268 |
-
|
269 |
-
|
270 |
-
if args.recon:
|
271 |
-
output_dir = os.path.join(output_dir, "recon")
|
272 |
-
os.makedirs(output_dir, exist_ok = True)
|
273 |
-
if args.recon_an_item:
|
274 |
-
mask_list = [torch.from_numpy(np.ones_like(mask_list[0].numpy()))]
|
275 |
-
tgt_string = set_string_list[args.tgt_index]
|
276 |
-
tgt_string = args.recon_prompt.replace("*", tgt_string)
|
277 |
-
set_string_list = [tgt_string]
|
278 |
-
print(set_string_list)
|
279 |
-
save_path = os.path.join(output_dir, "out_recon.png")
|
280 |
-
x_np = pipe.inference_with_mask(
|
281 |
-
save_path,
|
282 |
-
guidance_scale = args.guidance_scale,
|
283 |
-
num_sampling_steps = args.num_sampling_steps,
|
284 |
-
seed = args.seed,
|
285 |
-
num_imgs = args.num_imgs,
|
286 |
-
set_string_list = set_string_list,
|
287 |
-
mask_list = mask_list
|
288 |
-
)
|
289 |
-
|
290 |
-
if args.text:
|
291 |
-
print("Text-guided editing ")
|
292 |
-
output_dir = os.path.join(output_dir, "text")
|
293 |
-
os.makedirs(output_dir, exist_ok = True)
|
294 |
-
save_path = os.path.join(output_dir, "out_text.png")
|
295 |
-
set_string_list[args.tgt_index] = args.tgt_prompt
|
296 |
-
mask_active = torch.zeros_like(mask_list[0])
|
297 |
-
mask_active = mask_union_torch(mask_active, mask_list[args.tgt_index])
|
298 |
-
|
299 |
-
if args.active_mask_list is not None:
|
300 |
-
for midx in args.active_mask_list:
|
301 |
-
mask_active = mask_union_torch(mask_active, mask_list[midx])
|
302 |
-
|
303 |
-
if args.load_edited_mask:
|
304 |
-
mask_list_edited, mask_label_list_edited = load_mask_edit(input_folder)
|
305 |
-
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
306 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
307 |
-
mask_list = mask_list_edited
|
308 |
-
save_path = os.path.join(output_dir, "out_textEdited.png")
|
309 |
-
|
310 |
-
mask_hard = mask_substract_torch(torch.ones_like(mask_list[0]), mask_active)
|
311 |
-
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = args.edge_thickness)
|
312 |
-
mask_hard = mask_substract_torch(mask_hard, mask_soft)
|
313 |
-
|
314 |
-
pipe.inference_with_mask(
|
315 |
-
save_path,
|
316 |
-
orig_image = image_gt,
|
317 |
-
set_string_list = set_string_list,
|
318 |
-
guidance_scale = args.guidance_scale,
|
319 |
-
strength = args.strength,
|
320 |
-
num_imgs = args.num_imgs,
|
321 |
-
mask_hard= mask_hard,
|
322 |
-
mask_soft = mask_soft,
|
323 |
-
mask_list = mask_list,
|
324 |
-
seed = args.seed,
|
325 |
-
num_sampling_steps = args.num_sampling_steps
|
326 |
-
)
|
327 |
-
|
328 |
-
if args.remove:
|
329 |
-
output_dir = os.path.join(output_dir, "remove")
|
330 |
-
save_path = os.path.join(output_dir, "out_remove.png")
|
331 |
-
os.makedirs(output_dir, exist_ok = True)
|
332 |
-
mask_active = torch.zeros_like(mask_list[0])
|
333 |
-
|
334 |
-
if args.load_edited_mask:
|
335 |
-
mask_list_edited, _ = load_mask_edit(input_folder)
|
336 |
-
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
337 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
338 |
-
mask_list = mask_list_edited
|
339 |
-
|
340 |
-
if args.load_edited_processed_mask:
|
341 |
-
# manually edit or draw masks after removing one index, then load
|
342 |
-
mask_list_processed, _ = load_mask_edit(output_dir)
|
343 |
-
mask_remain = get_mask_difference_torch(mask_list_processed, mask_list)
|
344 |
-
else:
|
345 |
-
# generate masks after removing one index, using nearest neighbor algorithm
|
346 |
-
mask_list_processed, mask_remain = process_mask_remove_torch(mask_list, args.tgt_index)
|
347 |
-
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
|
348 |
-
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_removed.png"))
|
349 |
-
check_cover_all_torch(*mask_list_processed)
|
350 |
-
mask_active = mask_union_torch(mask_active, mask_remain)
|
351 |
-
|
352 |
-
if args.active_mask_list is not None:
|
353 |
-
for midx in args.active_mask_list:
|
354 |
-
mask_active = mask_union_torch(mask_active, mask_list[midx])
|
355 |
-
|
356 |
-
mask_hard = 1 - mask_active
|
357 |
-
mask_soft = create_outer_edge_mask_torch(mask_remain, edge_thickness = args.edge_thickness)
|
358 |
-
mask_hard = mask_substract_torch(mask_hard, mask_soft)
|
359 |
-
|
360 |
-
pipe.inference_with_mask(
|
361 |
-
save_path,
|
362 |
-
orig_image = image_gt,
|
363 |
-
guidance_scale = args.guidance_scale,
|
364 |
-
strength = args.strength,
|
365 |
-
num_imgs = args.num_imgs,
|
366 |
-
mask_hard= mask_hard,
|
367 |
-
mask_soft = mask_soft,
|
368 |
-
mask_list = mask_list_processed,
|
369 |
-
seed = args.seed,
|
370 |
-
num_sampling_steps = args.num_sampling_steps
|
371 |
-
)
|
372 |
-
|
373 |
-
if args.image:
|
374 |
-
output_dir = os.path.join(output_dir, "image")
|
375 |
-
save_path = os.path.join(output_dir, "out_image.png")
|
376 |
-
os.makedirs(output_dir, exist_ok = True)
|
377 |
-
mask_active = torch.zeros_like(mask_list[0])
|
378 |
-
|
379 |
-
if None not in (args.tgt_name, args.src_index, args.tgt_index):
|
380 |
-
if args.tgt_name == args.name:
|
381 |
-
set_string_list_tgt = set_string_list
|
382 |
-
set_string_list_src = set_string_list_2
|
383 |
-
image_tgt = image_gt
|
384 |
-
if args.load_edited_mask:
|
385 |
-
mask_list_edited, _ = load_mask_edit(input_folder)
|
386 |
-
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
387 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
388 |
-
mask_list = mask_list_edited
|
389 |
-
save_path = os.path.join(output_dir, "out_imageEdited.png")
|
390 |
-
mask_list_tgt = mask_list
|
391 |
-
|
392 |
-
elif args.tgt_name == args.name_2:
|
393 |
-
set_string_list_tgt = set_string_list_2
|
394 |
-
set_string_list_src = set_string_list
|
395 |
-
image_tgt = image_gt_2
|
396 |
-
if args.load_edited_mask:
|
397 |
-
mask_list_2_edited, _ = load_mask_edit(input_folder_2)
|
398 |
-
mask_diff = get_mask_difference_torch(mask_list_2_edited, mask_list_2)
|
399 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
400 |
-
mask_list_2 = mask_list_2_edited
|
401 |
-
save_path = os.path.join(output_dir, "out_imageEdited.png")
|
402 |
-
mask_list_tgt = mask_list_2
|
403 |
-
else:
|
404 |
-
exit("tgt_name should be either name or name_2")
|
405 |
-
|
406 |
-
set_string_list_tgt[args.tgt_index] = set_string_list_src[args.src_index]
|
407 |
-
|
408 |
-
mask_active = mask_list_tgt[args.tgt_index]
|
409 |
-
mask_frozen = (1-mask_active.float()).to(mask_active.device)
|
410 |
-
mask_soft = create_outer_edge_mask_torch(mask_active.cpu(), edge_thickness = args.edge_thickness)
|
411 |
-
mask_hard = mask_substract_torch(mask_frozen.cpu(), mask_soft.cpu())
|
412 |
-
|
413 |
-
mask_list_tgt = [m.cuda() for m in mask_list_tgt]
|
414 |
-
|
415 |
-
pipe.inference_with_mask(
|
416 |
-
save_path,
|
417 |
-
set_string_list = set_string_list_tgt,
|
418 |
-
mask_list = mask_list_tgt,
|
419 |
-
guidance_scale = args.guidance_scale,
|
420 |
-
num_sampling_steps = args.num_sampling_steps,
|
421 |
-
mask_hard = mask_hard.cuda(),
|
422 |
-
mask_soft = mask_soft.cuda(),
|
423 |
-
num_imgs = args.num_imgs,
|
424 |
-
orig_image = image_tgt,
|
425 |
-
strength = args.strength,
|
426 |
-
)
|
427 |
-
|
428 |
-
if args.move_resize:
|
429 |
-
output_dir = os.path.join(output_dir, "move_resize")
|
430 |
-
os.makedirs(output_dir, exist_ok = True)
|
431 |
-
save_path = os.path.join(output_dir, "out_moveresize.png")
|
432 |
-
mask_active = torch.zeros_like(mask_list[0])
|
433 |
-
|
434 |
-
if args.load_edited_mask:
|
435 |
-
mask_list_edited, _ = load_mask_edit(input_folder)
|
436 |
-
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
437 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
438 |
-
mask_list = mask_list_edited
|
439 |
-
# save_path = os.path.join(output_dir, "out_moveresizeEdited.png")
|
440 |
-
|
441 |
-
if args.load_edited_processed_mask:
|
442 |
-
mask_list_processed, _ = load_mask_edit(output_dir)
|
443 |
-
mask_remain = get_mask_difference_torch(mask_list_processed, mask_list)
|
444 |
-
else:
|
445 |
-
mask_list_processed, mask_remain = process_mask_move_torch(
|
446 |
-
mask_list,
|
447 |
-
args.tgt_indices_list,
|
448 |
-
args.delta_x_list,
|
449 |
-
args.delta_y_list, args.priority_list,
|
450 |
-
force_mask_remain = args.force_mask_remain,
|
451 |
-
resize_list = args.resize_list
|
452 |
-
)
|
453 |
-
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
|
454 |
-
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_move_resize.png"))
|
455 |
-
active_idxs = args.tgt_indices_list
|
456 |
-
|
457 |
-
mask_active = mask_union_torch(mask_active, *[m for midx, m in enumerate(mask_list_processed) if midx in active_idxs])
|
458 |
-
mask_active = mask_union_torch(mask_remain, mask_active)
|
459 |
-
if args.active_mask_list is not None:
|
460 |
-
for midx in args.active_mask_list:
|
461 |
-
mask_active = mask_union_torch(mask_active, mask_list_processed[midx])
|
462 |
-
|
463 |
-
mask_frozen =(1 - mask_active.float())
|
464 |
-
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = args.edge_thickness)
|
465 |
-
mask_hard = mask_substract_torch(mask_frozen, mask_soft)
|
466 |
-
|
467 |
-
check_mask_overlap_torch(mask_hard, mask_soft)
|
468 |
-
|
469 |
-
pipe.inference_with_mask(
|
470 |
-
save_path,
|
471 |
-
strength = args.strength,
|
472 |
-
orig_image = image_gt,
|
473 |
-
guidance_scale = args.guidance_scale,
|
474 |
-
num_sampling_steps = args.num_sampling_steps,
|
475 |
-
num_imgs = args.num_imgs,
|
476 |
-
mask_hard= mask_hard,
|
477 |
-
mask_soft = mask_soft,
|
478 |
-
mask_list = mask_list_processed,
|
479 |
-
seed = args.seed
|
480 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main.py
CHANGED
@@ -64,6 +64,7 @@ def run_main(
|
|
64 |
remove=False,
|
65 |
load_edited_removemask=False
|
66 |
):
|
|
|
67 |
torch.cuda.manual_seed_all(seed)
|
68 |
torch.manual_seed(seed)
|
69 |
base_input_folder = "."
|
@@ -220,9 +221,9 @@ def run_main(
|
|
220 |
set_string_list = set_string_list,
|
221 |
mask_list = mask_list
|
222 |
)
|
223 |
-
|
224 |
if text:
|
225 |
-
print("Text-guided editing ")
|
226 |
output_dir = os.path.join(output_dir, "text")
|
227 |
os.makedirs(output_dir, exist_ok = True)
|
228 |
save_path = os.path.join(output_dir, "out_text.png")
|
|
|
64 |
remove=False,
|
65 |
load_edited_removemask=False
|
66 |
):
|
67 |
+
|
68 |
torch.cuda.manual_seed_all(seed)
|
69 |
torch.manual_seed(seed)
|
70 |
base_input_folder = "."
|
|
|
221 |
set_string_list = set_string_list,
|
222 |
mask_list = mask_list
|
223 |
)
|
224 |
+
|
225 |
if text:
|
226 |
+
print("*** Text-guided editing ")
|
227 |
output_dir = os.path.join(output_dir, "text")
|
228 |
os.makedirs(output_dir, exist_ok = True)
|
229 |
save_path = os.path.join(output_dir, "out_text.png")
|
pipeline_dedit_sd.py
CHANGED
@@ -810,5 +810,5 @@ class DEditSDPipeline:
|
|
810 |
seed = seed
|
811 |
)
|
812 |
save_images(x0, save_path)
|
813 |
-
|
814 |
-
|
|
|
810 |
seed = seed
|
811 |
)
|
812 |
save_images(x0, save_path)
|
813 |
+
from PIL import Image
|
814 |
+
return Image.open("example_tmp/text/out_text_0.png")
|