Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,027 Bytes
d807efd 56db6e4 d807efd 703ff84 9a3725e 46d6254 9a3725e 46d6254 9a3725e 46d6254 9a3725e 46d6254 9a3725e 46d6254 9a3725e 46d6254 9a3725e 8963af6 622edaa e886e3e 8963af6 01d1b1f 8963af6 622edaa 38ae00e 622edaa e886e3e 8963af6 e886e3e 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 01d1b1f 8963af6 01d1b1f 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import os
import torch
import numpy as np
import argparse
from peft import LoraConfig
from pipeline_dedit_sdxl import DEditSDXLPipeline
from pipeline_dedit_sd import DEditSDPipeline
from utils import load_image, load_mask, load_mask_edit
from utils_mask import process_mask_move_torch, process_mask_remove_torch, mask_union_torch, mask_substract_torch, create_outer_edge_mask_torch
from utils_mask import check_mask_overlap_torch, check_cover_all_torch, visualize_mask_list, get_mask_difference_torch, save_mask_list_to_npys
print("PyTorch 版本:", torch.__version__)
print("CUDA 版本:", torch.version.cuda)
print("CUDA 是否可用:", torch.cuda.is_available())
import subprocess
# 检查 nvidia-smi 命令的输出
try:
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
print(result.stdout.decode())
except FileNotFoundError:
print("nvidia-smi 命令不可用,可能未安装 NVIDIA 驱动。")
device_count = torch.cuda.device_count()
print("可用的 CUDA 设备数量:", device_count)
for i in range(device_count):
print(f"设备 {i} 名称:", torch.cuda.get_device_name(i))
import os
try:
ctypes.CDLL('libnvidia-ml.so')
print("成功加载 libnvidia-ml.so。")
except Exception as e:
print("无法加载 libnvidia-ml.so,错误信息:", e)
import glob
libs = glob.glob('/usr/lib*/**/libnvidia-*.so*', recursive=True)
print("NVIDIA 驱动库文件:", libs)
print("LD_LIBRARY_PATH:", os.environ.get('LD_LIBRARY_PATH', '未设置'))
try:
with open('/proc/driver/nvidia/version') as f:
print(f.read())
except Exception as e:
print("无法读取驱动程序版本信息,错误信息:", e)
print("PyTorch 安装路径:", torch.__file__)
cuda_paths = [path for path in os.listdir('/usr/local') if path.startswith('cuda')]
print("CUDA 安装路径:", cuda_paths)
print("PyTorch CUDA 版本:", torch.version.cuda)
print("系统 CUDA 版本:", os.environ.get('CUDA_VERSION', '未设置'))
def run_main(
name="example_tmp",
name_2=None,
mask_np_list=None,
mask_label_list=None,
image_gt=None,
dpm="sd",
resolution=512,
seed=42,
embedding_learning_rate=1e-4,
max_emb_train_steps=200,
diffusion_model_learning_rate=5e-5,
max_diffusion_train_steps=200,
train_batch_size=1,
gradient_accumulation_steps=1,
num_tokens=1,
load_trained=False ,
num_sampling_steps=50,
guidance_scale= 3 ,
strength=0.8,
train_full_lora=False ,
lora_rank=4,
lora_alpha=4,
prompt_auxin_list = None,
prompt_auxin_idx_list= None,
load_edited_mask=False,
load_edited_processed_mask=False,
edge_thickness=20,
num_imgs= 1 ,
active_mask_list = None,
tgt_index=None,
recon=False ,
recon_an_item=False,
recon_prompt=None,
text=False,
tgt_prompt=None,
image=False ,
src_index=None,
tgt_name=None,
move_resize=False ,
tgt_indices_list=None,
delta_x_list=None,
delta_y_list=None,
priority_list=None,
force_mask_remain=None,
resize_list=None,
remove=False,
load_edited_removemask=False
):
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
base_input_folder = "."
base_output_folder = "."
input_folder = os.path.join(base_input_folder, name)
mask_list = []
for mask_np in mask_np_list:
mask = torch.from_numpy(mask_np.astype(np.uint8))
mask_list.append(mask)
#mask_list, mask_label_list = load_mask(input_folder)
assert mask_list[0].shape[0] == resolution, "Segmentation should be done on size {}".format(resolution)
#try:
# image_gt = load_image(os.path.join(input_folder, "img_{}.png".format(resolution) ), size = resolution)
#except:
# image_gt = load_image(os.path.join(input_folder, "img_{}.jpg".format(resolution) ), size = resolution)
if image:
input_folder_2 = os.path.join(base_input_folder, name_2)
mask_list_2, mask_label_list_2 = load_mask(input_folder_2)
assert mask_list_2[0].shape[0] == resolution, "Segmentation should be done on size {}".format(resolution)
try:
image_gt_2 = load_image(os.path.join(input_folder_2, "img_{}.png".format(resolution) ), size = resolution)
except:
image_gt_2 = load_image(os.path.join(input_folder_2, "img_{}.jpg".format(resolution) ), size = resolution)
output_dir = os.path.join(base_output_folder, name + "_" + name_2)
os.makedirs(output_dir, exist_ok = True)
else:
output_dir = os.path.join(base_output_folder, name)
os.makedirs(output_dir, exist_ok = True)
if dpm == "sd":
if image:
pipe = DEditSDPipeline(mask_list, mask_label_list, mask_list_2, mask_label_list_2, resolution = resolution, num_tokens = num_tokens)
else:
pipe = DEditSDPipeline(mask_list, mask_label_list, resolution = resolution, num_tokens = num_tokens)
elif dpm == "sdxl":
if image:
pipe = DEditSDXLPipeline(mask_list, mask_label_list, mask_list_2, mask_label_list_2, resolution = resolution, num_tokens = num_tokens)
else:
pipe = DEditSDXLPipeline(mask_list, mask_label_list, resolution = resolution, num_tokens = num_tokens)
else:
raise NotImplementedError
set_string_list = pipe.set_string_list
if prompt_auxin_list is not None:
for auxin_idx, auxin_prompt in zip(prompt_auxin_idx_list, prompt_auxin_list):
set_string_list[auxin_idx] = auxin_prompt.replace("*", set_string_list[auxin_idx] )
print(set_string_list)
if image:
set_string_list_2 = pipe.set_string_list_2
print(set_string_list_2)
if load_trained:
unet_save_path = os.path.join(output_dir, "unet.pt")
unet_state_dict = torch.load(unet_save_path)
text_encoder1_save_path = os.path.join(output_dir, "text_encoder1.pt")
text_encoder1_state_dict = torch.load(text_encoder1_save_path)
if dpm == "sdxl":
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
text_encoder2_state_dict = torch.load(text_encoder2_save_path)
if 'lora' in ''.join(unet_state_dict.keys()):
unet_lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
pipe.unet.add_adapter(unet_lora_config)
pipe.unet.load_state_dict(unet_state_dict)
pipe.text_encoder.load_state_dict(text_encoder1_state_dict)
if dpm == "sdxl":
pipe.text_encoder_2.load_state_dict(text_encoder2_state_dict)
else:
if image:
pipe.mask_list = [m.cuda() for m in pipe.mask_list]
pipe.mask_list_2 = [m.cuda() for m in pipe.mask_list_2]
pipe.train_emb_2imgs(
image_gt,
image_gt_2,
set_string_list,
set_string_list_2,
gradient_accumulation_steps = gradient_accumulation_steps,
embedding_learning_rate = embedding_learning_rate,
max_emb_train_steps = max_emb_train_steps,
train_batch_size = train_batch_size,
)
pipe.train_model_2imgs(
image_gt,
image_gt_2,
set_string_list,
set_string_list_2,
gradient_accumulation_steps = gradient_accumulation_steps,
max_diffusion_train_steps = max_diffusion_train_steps,
diffusion_model_learning_rate = diffusion_model_learning_rate ,
train_batch_size =train_batch_size,
train_full_lora = train_full_lora,
lora_rank = lora_rank,
lora_alpha = lora_alpha
)
else:
pipe.mask_list = [m.cuda() for m in pipe.mask_list]
pipe.train_emb(
image_gt,
set_string_list,
gradient_accumulation_steps = gradient_accumulation_steps,
embedding_learning_rate = embedding_learning_rate,
max_emb_train_steps = max_emb_train_steps,
train_batch_size = train_batch_size,
)
pipe.train_model(
image_gt,
set_string_list,
gradient_accumulation_steps = gradient_accumulation_steps,
max_diffusion_train_steps = max_diffusion_train_steps,
diffusion_model_learning_rate = diffusion_model_learning_rate ,
train_batch_size = train_batch_size,
train_full_lora = train_full_lora,
lora_rank = lora_rank,
lora_alpha = lora_alpha
)
unet_save_path = os.path.join(output_dir, "unet.pt")
torch.save(pipe.unet.state_dict(),unet_save_path )
text_encoder1_save_path = os.path.join(output_dir, "text_encoder1.pt")
torch.save(pipe.text_encoder.state_dict(), text_encoder1_save_path)
if dpm == "sdxl":
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
torch.save(pipe.text_encoder_2.state_dict(), text_encoder2_save_path )
if recon:
output_dir = os.path.join(output_dir, "recon")
os.makedirs(output_dir, exist_ok = True)
if recon_an_item:
mask_list = [torch.from_numpy(np.ones_like(mask_list[0].numpy()))]
tgt_string = set_string_list[tgt_index]
tgt_string = recon_prompt.replace("*", tgt_string)
set_string_list = [tgt_string]
print(set_string_list)
save_path = os.path.join(output_dir, "out_recon.png")
x_np = pipe.inference_with_mask(
save_path,
guidance_scale = guidance_scale,
num_sampling_steps = num_sampling_steps,
seed = seed,
num_imgs = num_imgs,
set_string_list = set_string_list,
mask_list = mask_list
)
if text:
print("*** Text-guided editing ")
output_dir = os.path.join(output_dir, "text")
os.makedirs(output_dir, exist_ok = True)
save_path = os.path.join(output_dir, "out_text.png")
set_string_list[tgt_index] = tgt_prompt
mask_active = torch.zeros_like(mask_list[0])
mask_active = mask_union_torch(mask_active, mask_list[tgt_index])
if active_mask_list is not None:
for midx in active_mask_list:
mask_active = mask_union_torch(mask_active, mask_list[midx])
if load_edited_mask:
mask_list_edited, mask_label_list_edited = load_mask_edit(input_folder)
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
mask_active = mask_union_torch(mask_active, mask_diff)
mask_list = mask_list_edited
save_path = os.path.join(output_dir, "out_textEdited.png")
mask_hard = mask_substract_torch(torch.ones_like(mask_list[0]), mask_active)
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = edge_thickness)
mask_hard = mask_substract_torch(mask_hard, mask_soft)
pipe.inference_with_mask(
save_path,
orig_image = image_gt,
set_string_list = set_string_list,
guidance_scale = guidance_scale,
strength = strength,
num_imgs = num_imgs,
mask_hard= mask_hard,
mask_soft = mask_soft,
mask_list = mask_list,
seed = seed,
num_sampling_steps = num_sampling_steps
)
if remove:
output_dir = os.path.join(output_dir, "remove")
save_path = os.path.join(output_dir, "out_remove.png")
os.makedirs(output_dir, exist_ok = True)
mask_active = torch.zeros_like(mask_list[0])
if load_edited_mask:
mask_list_edited, _ = load_mask_edit(input_folder)
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
mask_active = mask_union_torch(mask_active, mask_diff)
mask_list = mask_list_edited
if load_edited_processed_mask:
# manually edit or draw masks after removing one index, then load
mask_list_processed, _ = load_mask_edit(output_dir)
mask_remain = get_mask_difference_torch(mask_list_processed, mask_list)
else:
# generate masks after removing one index, using nearest neighbor algorithm
mask_list_processed, mask_remain = process_mask_remove_torch(mask_list, tgt_index)
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_removed.png"))
check_cover_all_torch(*mask_list_processed)
mask_active = mask_union_torch(mask_active, mask_remain)
if active_mask_list is not None:
for midx in active_mask_list:
mask_active = mask_union_torch(mask_active, mask_list[midx])
mask_hard = 1 - mask_active
mask_soft = create_outer_edge_mask_torch(mask_remain, edge_thickness = edge_thickness)
mask_hard = mask_substract_torch(mask_hard, mask_soft)
pipe.inference_with_mask(
save_path,
orig_image = image_gt,
guidance_scale = guidance_scale,
strength = strength,
num_imgs = num_imgs,
mask_hard= mask_hard,
mask_soft = mask_soft,
mask_list = mask_list_processed,
seed = seed,
num_sampling_steps = num_sampling_steps
)
if image:
output_dir = os.path.join(output_dir, "image")
save_path = os.path.join(output_dir, "out_image.png")
os.makedirs(output_dir, exist_ok = True)
mask_active = torch.zeros_like(mask_list[0])
if None not in (tgt_name, src_index, tgt_index):
if tgt_name == name:
set_string_list_tgt = set_string_list
set_string_list_src = set_string_list_2
image_tgt = image_gt
if load_edited_mask:
mask_list_edited, _ = load_mask_edit(input_folder)
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
mask_active = mask_union_torch(mask_active, mask_diff)
mask_list = mask_list_edited
save_path = os.path.join(output_dir, "out_imageEdited.png")
mask_list_tgt = mask_list
elif tgt_name == name_2:
set_string_list_tgt = set_string_list_2
set_string_list_src = set_string_list
image_tgt = image_gt_2
if load_edited_mask:
mask_list_2_edited, _ = load_mask_edit(input_folder_2)
mask_diff = get_mask_difference_torch(mask_list_2_edited, mask_list_2)
mask_active = mask_union_torch(mask_active, mask_diff)
mask_list_2 = mask_list_2_edited
save_path = os.path.join(output_dir, "out_imageEdited.png")
mask_list_tgt = mask_list_2
else:
exit("tgt_name should be either name or name_2")
set_string_list_tgt[tgt_index] = set_string_list_src[src_index]
mask_active = mask_list_tgt[tgt_index]
mask_frozen = (1-mask_active.float()).to(mask_active.device)
mask_soft = create_outer_edge_mask_torch(mask_active.cpu(), edge_thickness = edge_thickness)
mask_hard = mask_substract_torch(mask_frozen.cpu(), mask_soft.cpu())
mask_list_tgt = [m.cuda() for m in mask_list_tgt]
pipe.inference_with_mask(
save_path,
set_string_list = set_string_list_tgt,
mask_list = mask_list_tgt,
guidance_scale = guidance_scale,
num_sampling_steps = num_sampling_steps,
mask_hard = mask_hard.cuda(),
mask_soft = mask_soft.cuda(),
num_imgs = num_imgs,
orig_image = image_tgt,
strength = strength,
)
if move_resize:
output_dir = os.path.join(output_dir, "move_resize")
os.makedirs(output_dir, exist_ok = True)
save_path = os.path.join(output_dir, "out_moveresize.png")
mask_active = torch.zeros_like(mask_list[0])
if load_edited_mask:
mask_list_edited, _ = load_mask_edit(input_folder)
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
mask_active = mask_union_torch(mask_active, mask_diff)
mask_list = mask_list_edited
# save_path = os.path.join(output_dir, "out_moveresizeEdited.png")
if load_edited_processed_mask:
mask_list_processed, _ = load_mask_edit(output_dir)
mask_remain = get_mask_difference_torch(mask_list_processed, mask_list)
else:
mask_list_processed, mask_remain = process_mask_move_torch(
mask_list,
tgt_indices_list,
delta_x_list,
delta_y_list, priority_list,
force_mask_remain = force_mask_remain,
resize_list = resize_list
)
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_move_resize.png"))
active_idxs = tgt_indices_list
mask_active = mask_union_torch(mask_active, *[m for midx, m in enumerate(mask_list_processed) if midx in active_idxs])
mask_active = mask_union_torch(mask_remain, mask_active)
if active_mask_list is not None:
for midx in active_mask_list:
mask_active = mask_union_torch(mask_active, mask_list_processed[midx])
mask_frozen =(1 - mask_active.float())
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = edge_thickness)
mask_hard = mask_substract_torch(mask_frozen, mask_soft)
check_mask_overlap_torch(mask_hard, mask_soft)
pipe.inference_with_mask(
save_path,
strength = strength,
orig_image = image_gt,
guidance_scale = guidance_scale,
num_sampling_steps = num_sampling_steps,
num_imgs = num_imgs,
mask_hard= mask_hard,
mask_soft = mask_soft,
mask_list = mask_list_processed,
seed = seed
)
|