File size: 1,257 Bytes
e7ebace 9a47918 abbaadb 9a47918 3c97636 abbaadb 0fecaab c2ec08b 9a47918 e7ebace 0cbca3d 3970b0a 736df11 100add5 736df11 3970b0a 0cbca3d aee24dc 0cbca3d aee24dc 0cbca3d 64fe5a1 0cbca3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from t5.t5_model import T5Model
from transformers import AutoTokenizer, T5ForConditionalGeneration
#tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5")
#model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5")
model = T5Model('t5', "CodeTed/Chinese_Spelling_Correction_T5", args={"eval_batch_size": 1}, cuda_device=-1, evaluate=True)
def cged_correction(sentence = '為了降低少子化,政府可以堆動獎勵生育的政策。'):
for _ in range(3):
outputs = model.predict(["糾正句子中的錯字:" + sentence + "_輸出句:"])
sentence = outputs[0]
return outputs[0]
with gr.Blocks() as demo:
gr.Markdown(
"""
# 中文錯別字校正 - Chinese Spelling Correction
### Find Spelling Error and get the correction!
Start typing below to see the correction.
"""
)
#設定輸入元件
sent = gr.Textbox(label="Sentence", placeholder="input the sentence")
# 設定輸出元件
output = gr.Textbox(label="Result", placeholder="correction")
#設定按鈕
greet_btn = gr.Button("Correction")
#設定按鈕點選事件
greet_btn.click(fn=cged_correction, inputs=sent, outputs=output)
demo.launch() |