TedYeh
commited on
Commit
•
9a47918
1
Parent(s):
4ac7ae8
update t5 package
Browse files- app.py +6 -7
- t5/__init__.py +9 -0
- t5/__pycache__/__init__.cpython-38.pyc +0 -0
- t5/__pycache__/copyt5_model.cpython-38.pyc +0 -0
- t5/__pycache__/copyt5_utils.cpython-38.pyc +0 -0
- t5/__pycache__/t5_model.cpython-38.pyc +0 -0
- t5/__pycache__/t5_utils.cpython-38.pyc +0 -0
- t5/config/__init__.py +5 -0
- t5/config/__pycache__/__init__.cpython-38.pyc +0 -0
- t5/config/__pycache__/model_args.cpython-38.pyc +0 -0
- t5/config/global_args.py +62 -0
- t5/config/model_args.py +464 -0
- t5/t5_model.py +1256 -0
- t5/t5_utils.py +214 -0
app.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
3 |
-
tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5")
|
4 |
-
model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5")
|
5 |
-
|
6 |
|
7 |
def cged_correction(sentence = '為了降低少子化,政府可以堆動獎勵生育的政策。'):
|
8 |
-
|
9 |
-
outputs
|
10 |
-
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
11 |
-
return edited_text
|
12 |
|
13 |
with gr.Blocks() as demo:
|
14 |
gr.Markdown(
|
|
|
1 |
import gradio as gr
|
2 |
+
from t5.t5_model import T5Model
|
3 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
4 |
+
#tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5")
|
5 |
+
#model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5")
|
6 |
+
model = T5Model('t5', "CodeTed/traditional_CSC_t5", args={"eval_batch_size": 1}, cuda_device=-1, evaluate=True)
|
7 |
|
8 |
def cged_correction(sentence = '為了降低少子化,政府可以堆動獎勵生育的政策。'):
|
9 |
+
outputs = model.predict(["糾正句子中的錯字:" + sentence + "_輸出句:"])
|
10 |
+
return outputs[0]
|
|
|
|
|
11 |
|
12 |
with gr.Blocks() as demo:
|
13 |
gr.Markdown(
|
t5/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
@author:XuMing([email protected])
|
4 |
+
@description:
|
5 |
+
"""
|
6 |
+
from textgen.config.model_args import T5Args, CopyT5Args
|
7 |
+
from textgen.t5.t5_model import T5Model
|
8 |
+
from textgen.t5.copyt5_model import CopyT5Model
|
9 |
+
from textgen.t5.copyt5_utils import ZHTokenizer
|
t5/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (448 Bytes). View file
|
|
t5/__pycache__/copyt5_model.cpython-38.pyc
ADDED
Binary file (28.5 kB). View file
|
|
t5/__pycache__/copyt5_utils.cpython-38.pyc
ADDED
Binary file (6.18 kB). View file
|
|
t5/__pycache__/t5_model.cpython-38.pyc
ADDED
Binary file (28.4 kB). View file
|
|
t5/__pycache__/t5_utils.cpython-38.pyc
ADDED
Binary file (5.93 kB). View file
|
|
t5/config/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
@author:XuMing([email protected])
|
4 |
+
@description: refer https://github.com/ThilinaRajapakse/simpletransformers
|
5 |
+
"""
|
t5/config/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (265 Bytes). View file
|
|
t5/config/__pycache__/model_args.cpython-38.pyc
ADDED
Binary file (15.7 kB). View file
|
|
t5/config/global_args.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
@author:XuMing([email protected])
|
4 |
+
@description: refer https://github.com/ThilinaRajapakse/simpletransformers
|
5 |
+
"""
|
6 |
+
import sys
|
7 |
+
from multiprocessing import cpu_count
|
8 |
+
|
9 |
+
global_args = {
|
10 |
+
"adam_epsilon": 1e-8,
|
11 |
+
"best_model_dir": "outputs/best_model",
|
12 |
+
"cache_dir": "cache_dir/",
|
13 |
+
"config": {},
|
14 |
+
"do_lower_case": False,
|
15 |
+
"early_stopping_consider_epochs": False,
|
16 |
+
"early_stopping_delta": 0,
|
17 |
+
"early_stopping_metric": "eval_loss",
|
18 |
+
"early_stopping_metric_minimize": True,
|
19 |
+
"early_stopping_patience": 3,
|
20 |
+
"encoding": None,
|
21 |
+
"eval_batch_size": 8,
|
22 |
+
"evaluate_during_training": False,
|
23 |
+
"evaluate_during_training_silent": True,
|
24 |
+
"evaluate_during_training_steps": 2000,
|
25 |
+
"evaluate_during_training_verbose": False,
|
26 |
+
"fp16": True,
|
27 |
+
"gradient_accumulation_steps": 1,
|
28 |
+
"learning_rate": 4e-5,
|
29 |
+
"local_rank": -1,
|
30 |
+
"logging_steps": 50,
|
31 |
+
"manual_seed": None,
|
32 |
+
"max_grad_norm": 1.0,
|
33 |
+
"max_seq_length": 128,
|
34 |
+
"multiprocessing_chunksize": 500,
|
35 |
+
"n_gpu": 1,
|
36 |
+
"no_cache": False,
|
37 |
+
"no_save": False,
|
38 |
+
"num_train_epochs": 1,
|
39 |
+
"output_dir": "outputs/",
|
40 |
+
"overwrite_output_dir": False,
|
41 |
+
"process_count": cpu_count() - 2 if cpu_count() > 2 else 1,
|
42 |
+
"reprocess_input_data": True,
|
43 |
+
"save_best_model": True,
|
44 |
+
"save_eval_checkpoints": True,
|
45 |
+
"save_model_every_epoch": True,
|
46 |
+
"save_steps": 2000,
|
47 |
+
"save_optimizer_and_scheduler": True,
|
48 |
+
"silent": False,
|
49 |
+
"tensorboard_dir": None,
|
50 |
+
"train_batch_size": 8,
|
51 |
+
"use_cached_eval_features": False,
|
52 |
+
"use_early_stopping": False,
|
53 |
+
"use_multiprocessing": False,
|
54 |
+
"wandb_kwargs": {},
|
55 |
+
"wandb_project": None,
|
56 |
+
"warmup_ratio": 0.06,
|
57 |
+
"warmup_steps": 0,
|
58 |
+
"weight_decay": 0,
|
59 |
+
}
|
60 |
+
|
61 |
+
if sys.platform == "win32":
|
62 |
+
global_args["process_count"] = min(global_args["process_count"], 61)
|
t5/config/model_args.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
@author:XuMing([email protected])
|
4 |
+
@description: refer https://github.com/ThilinaRajapakse/simpletransformers
|
5 |
+
"""
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
from dataclasses import asdict, dataclass, field
|
10 |
+
from multiprocessing import cpu_count
|
11 |
+
from typing import Optional
|
12 |
+
|
13 |
+
from loguru import logger
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
|
16 |
+
|
17 |
+
def get_default_process_count():
|
18 |
+
process_count = cpu_count() - 2 if cpu_count() > 2 else 1
|
19 |
+
if sys.platform == "win32":
|
20 |
+
process_count = min(process_count, 61)
|
21 |
+
|
22 |
+
return process_count
|
23 |
+
|
24 |
+
|
25 |
+
def get_special_tokens():
|
26 |
+
return ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class ModelArgs:
|
31 |
+
adafactor_beta1: float = None
|
32 |
+
adafactor_clip_threshold: float = 1.0
|
33 |
+
adafactor_decay_rate: float = -0.8
|
34 |
+
adafactor_eps: tuple = field(default_factory=lambda: (1e-30, 1e-3))
|
35 |
+
adafactor_relative_step: bool = True
|
36 |
+
adafactor_scale_parameter: bool = True
|
37 |
+
adafactor_warmup_init: bool = True
|
38 |
+
adam_epsilon: float = 1e-8
|
39 |
+
best_model_dir: str = "outputs/best_model"
|
40 |
+
cache_dir: str = "cache_dir/"
|
41 |
+
config: dict = field(default_factory=dict)
|
42 |
+
cosine_schedule_num_cycles: float = 0.5
|
43 |
+
custom_layer_parameters: list = field(default_factory=list)
|
44 |
+
custom_parameter_groups: list = field(default_factory=list)
|
45 |
+
dataloader_num_workers: int = 0
|
46 |
+
do_lower_case: bool = False
|
47 |
+
dynamic_quantize: bool = False
|
48 |
+
early_stopping_consider_epochs: bool = False
|
49 |
+
early_stopping_delta: float = 0
|
50 |
+
early_stopping_metric: str = "eval_loss"
|
51 |
+
early_stopping_metric_minimize: bool = True
|
52 |
+
early_stopping_patience: int = 3
|
53 |
+
encoding: str = "utf-8"
|
54 |
+
eval_batch_size: int = 8
|
55 |
+
evaluate_during_training: bool = False
|
56 |
+
evaluate_during_training_silent: bool = True
|
57 |
+
evaluate_during_training_steps: int = 6000
|
58 |
+
evaluate_during_training_verbose: bool = False
|
59 |
+
evaluate_each_epoch: bool = True
|
60 |
+
fp16: bool = False
|
61 |
+
gradient_accumulation_steps: int = 1
|
62 |
+
learning_rate: float = 2e-5
|
63 |
+
local_rank: int = -1
|
64 |
+
logging_steps: int = 50
|
65 |
+
manual_seed: int = None
|
66 |
+
max_grad_norm: float = 1.0
|
67 |
+
max_seq_length: int = 128 # max length of input sequence
|
68 |
+
model_name: str = None
|
69 |
+
model_type: str = None
|
70 |
+
multiprocessing_chunksize: int = -1
|
71 |
+
n_gpu: int = 2
|
72 |
+
no_cache: bool = False
|
73 |
+
no_save: bool = False
|
74 |
+
not_saved_args: list = field(default_factory=list)
|
75 |
+
num_train_epochs: int = 1
|
76 |
+
optimizer: str = "AdamW"
|
77 |
+
output_dir: str = "outputs/"
|
78 |
+
overwrite_output_dir: bool = True
|
79 |
+
polynomial_decay_schedule_lr_end: float = 1e-7
|
80 |
+
polynomial_decay_schedule_power: float = 1.0
|
81 |
+
process_count: int = field(default_factory=get_default_process_count)
|
82 |
+
quantized_model: bool = False
|
83 |
+
reprocess_input_data: bool = False
|
84 |
+
save_best_model: bool = True
|
85 |
+
save_eval_checkpoints: bool = True
|
86 |
+
save_model_every_epoch: bool = False
|
87 |
+
save_optimizer_and_scheduler: bool = True
|
88 |
+
save_steps: int = 10000
|
89 |
+
scheduler: str = "linear_schedule_with_warmup"
|
90 |
+
silent: bool = False
|
91 |
+
skip_special_tokens: bool = True
|
92 |
+
tensorboard_dir: str = None
|
93 |
+
thread_count: int = None
|
94 |
+
tokenizer_name: str = None
|
95 |
+
tokenizer_type: str = None
|
96 |
+
train_batch_size: int = 8
|
97 |
+
train_custom_parameters_only: bool = False
|
98 |
+
use_cached_eval_features: bool = False
|
99 |
+
use_early_stopping: bool = False
|
100 |
+
use_hf_datasets: bool = False
|
101 |
+
use_multiprocessing: bool = True
|
102 |
+
use_multiprocessing_for_evaluation: bool = True
|
103 |
+
wandb_kwargs: dict = field(default_factory=dict)
|
104 |
+
wandb_project: str = None
|
105 |
+
warmup_ratio: float = 0.06
|
106 |
+
warmup_steps: int = 0
|
107 |
+
weight_decay: float = 0.0
|
108 |
+
|
109 |
+
def update_from_dict(self, new_values):
|
110 |
+
if isinstance(new_values, dict):
|
111 |
+
for key, value in new_values.items():
|
112 |
+
setattr(self, key, value)
|
113 |
+
else:
|
114 |
+
raise (TypeError(f"{new_values} is not a Python dict."))
|
115 |
+
|
116 |
+
def get_args_for_saving(self):
|
117 |
+
args_for_saving = {key: value for key, value in asdict(self).items() if key not in self.not_saved_args}
|
118 |
+
return args_for_saving
|
119 |
+
|
120 |
+
def save(self, output_dir):
|
121 |
+
os.makedirs(output_dir, exist_ok=True)
|
122 |
+
with open(os.path.join(output_dir, "model_args.json"), "w", encoding='utf-8') as f:
|
123 |
+
args_dict = self.get_args_for_saving()
|
124 |
+
if args_dict['dataset_class'] is not None and not isinstance(args_dict["dataset_class"], str):
|
125 |
+
args_dict['dataset_class'] = type(args_dict['dataset_class']).__name__
|
126 |
+
if args_dict["tokenizer_type"] is not None and not isinstance(args_dict["tokenizer_type"], str):
|
127 |
+
args_dict["tokenizer_type"] = type(args_dict["tokenizer_type"]).__name__
|
128 |
+
json.dump(args_dict, f)
|
129 |
+
|
130 |
+
def load(self, input_dir):
|
131 |
+
if input_dir:
|
132 |
+
model_args_file = os.path.join(input_dir, "model_args.json")
|
133 |
+
if os.path.isfile(model_args_file):
|
134 |
+
with open(model_args_file, "r", encoding='utf-8') as f:
|
135 |
+
model_args = json.load(f)
|
136 |
+
if model_args["dataset_class"]:
|
137 |
+
logger.warning(
|
138 |
+
"This model was trained using a custom dataset_class."
|
139 |
+
"This cannot be loaded automatically and must be specified in the model args"
|
140 |
+
"when loading the model."
|
141 |
+
)
|
142 |
+
self.update_from_dict(model_args)
|
143 |
+
|
144 |
+
|
145 |
+
@dataclass
|
146 |
+
class T5Args(ModelArgs):
|
147 |
+
"""
|
148 |
+
Model args for a T5Model
|
149 |
+
"""
|
150 |
+
|
151 |
+
model_class: str = "T5Model"
|
152 |
+
dataset_class: Dataset = None
|
153 |
+
do_sample: bool = False
|
154 |
+
early_stopping: bool = True
|
155 |
+
evaluate_generated_text: bool = False
|
156 |
+
length_penalty: float = 2.0
|
157 |
+
max_length: int = 180 # max length of the sequence to be generated
|
158 |
+
max_steps: int = -1
|
159 |
+
num_beams: int = 1
|
160 |
+
num_return_sequences: int = 1
|
161 |
+
preprocess_inputs: bool = True
|
162 |
+
repetition_penalty: float = 1.0
|
163 |
+
scheduler: str = "constant_schedule_with_warmup"
|
164 |
+
adafactor_relative_step: bool = False
|
165 |
+
adafactor_scale_parameter: bool = False
|
166 |
+
adafactor_warmup_init: bool = False
|
167 |
+
learning_rate: float = 5e-4
|
168 |
+
optimizer: str = "AdamW"
|
169 |
+
special_tokens_list: list = field(default_factory=list)
|
170 |
+
top_k: float = None
|
171 |
+
top_p: float = None
|
172 |
+
use_multiprocessed_decoding: bool = False
|
173 |
+
|
174 |
+
|
175 |
+
@dataclass
|
176 |
+
class CopyT5Args(ModelArgs):
|
177 |
+
"""
|
178 |
+
Model args for a CopyT5Model
|
179 |
+
"""
|
180 |
+
|
181 |
+
model_class: str = "CopyT5Model"
|
182 |
+
dataset_class: Dataset = None
|
183 |
+
do_sample: bool = False
|
184 |
+
early_stopping: bool = True
|
185 |
+
evaluate_generated_text: bool = False
|
186 |
+
length_penalty: float = 2.0
|
187 |
+
max_length: int = 128 # max length of the sequence to be generated
|
188 |
+
max_steps: int = -1
|
189 |
+
num_beams: int = 3
|
190 |
+
num_return_sequences: int = 1
|
191 |
+
preprocess_inputs: bool = True
|
192 |
+
repetition_penalty: float = 1.0
|
193 |
+
scheduler: str = "linear_schedule_with_warmup"
|
194 |
+
adafactor_relative_step: bool = False
|
195 |
+
adafactor_scale_parameter: bool = False
|
196 |
+
adafactor_warmup_init: bool = False
|
197 |
+
learning_rate: float = 1e-3
|
198 |
+
optimizer: str = "AdamW"
|
199 |
+
special_tokens_list: list = field(default_factory=list)
|
200 |
+
top_k: float = None
|
201 |
+
top_p: float = None
|
202 |
+
use_multiprocessed_decoding: bool = False
|
203 |
+
|
204 |
+
|
205 |
+
@dataclass
|
206 |
+
class LanguageModelingArgs(ModelArgs):
|
207 |
+
"""
|
208 |
+
Model args for a LanguageModelingModel
|
209 |
+
"""
|
210 |
+
|
211 |
+
model_class: str = "LanguageModelingModel"
|
212 |
+
block_size: int = -1
|
213 |
+
config_name: str = None
|
214 |
+
dataset_class: Dataset = None
|
215 |
+
dataset_type: str = "None"
|
216 |
+
discriminator_config: dict = field(default_factory=dict)
|
217 |
+
discriminator_loss_weight: float = 50.0
|
218 |
+
generator_config: dict = field(default_factory=dict)
|
219 |
+
max_steps: int = -1
|
220 |
+
min_frequency: int = 2
|
221 |
+
mlm: bool = True
|
222 |
+
mlm_probability: float = 0.15
|
223 |
+
sliding_window: bool = False
|
224 |
+
special_tokens: list = field(default_factory=get_special_tokens)
|
225 |
+
stride: float = 0.8
|
226 |
+
tie_generator_and_discriminator_embeddings: bool = True
|
227 |
+
tokenizer_name: str = None
|
228 |
+
vocab_size: int = None
|
229 |
+
clean_text: bool = True
|
230 |
+
handle_chinese_chars: bool = True
|
231 |
+
special_tokens_list: list = field(default_factory=list)
|
232 |
+
strip_accents: bool = True
|
233 |
+
local_rank: int = -1
|
234 |
+
|
235 |
+
|
236 |
+
@dataclass
|
237 |
+
class Seq2SeqArgs(ModelArgs):
|
238 |
+
"""
|
239 |
+
Model args for a Seq2SeqModel
|
240 |
+
"""
|
241 |
+
|
242 |
+
model_class: str = "Seq2SeqModel"
|
243 |
+
base_marian_model_name: str = None
|
244 |
+
dataset_class: Dataset = None
|
245 |
+
do_sample: bool = False
|
246 |
+
early_stopping: bool = True
|
247 |
+
evaluate_generated_text: bool = False
|
248 |
+
faiss_d: int = 768
|
249 |
+
faiss_m: int = 128
|
250 |
+
length_penalty: float = 2.0
|
251 |
+
max_length: int = 128 # max length of the sequence to be generated
|
252 |
+
max_steps: int = -1
|
253 |
+
num_beams: int = 1
|
254 |
+
num_return_sequences: int = 1
|
255 |
+
rag_embed_batch_size: int = 16
|
256 |
+
repetition_penalty: float = 1.0
|
257 |
+
top_k: float = None
|
258 |
+
top_p: float = None
|
259 |
+
use_multiprocessed_decoding: bool = False
|
260 |
+
save_knowledge_dataset: bool = True
|
261 |
+
save_knowledge_dataset_with_checkpoints: bool = False
|
262 |
+
split_text_character: str = " "
|
263 |
+
split_text_n: int = 100
|
264 |
+
src_lang: str = "en_XX"
|
265 |
+
tgt_lang: str = "ro_RO"
|
266 |
+
|
267 |
+
|
268 |
+
@dataclass
|
269 |
+
class LanguageGenerationArgs(ModelArgs):
|
270 |
+
"""
|
271 |
+
Model args for a LanguageGenerationModel
|
272 |
+
"""
|
273 |
+
|
274 |
+
model_class: str = "LanguageGenerationModel"
|
275 |
+
do_sample: bool = True
|
276 |
+
early_stopping: bool = True
|
277 |
+
evaluate_generated_text: bool = False
|
278 |
+
length_penalty: float = 2.0
|
279 |
+
max_length: int = 128 # max length of the sequence to be generated
|
280 |
+
max_steps: int = -1
|
281 |
+
num_beams: int = 1
|
282 |
+
num_return_sequences: int = 1
|
283 |
+
repetition_penalty: float = 1.0
|
284 |
+
top_k: float = 50
|
285 |
+
top_p: float = 0.95
|
286 |
+
prompt: str = ""
|
287 |
+
stop_token: str = None
|
288 |
+
temperature: float = 1.0
|
289 |
+
padding_text: str = ""
|
290 |
+
xlm_language: str = ""
|
291 |
+
config_name: str = None
|
292 |
+
tokenizer_name: str = None
|
293 |
+
special_tokens_list: list = field(default_factory=list)
|
294 |
+
|
295 |
+
|
296 |
+
@dataclass
|
297 |
+
class SongNetArgs(LanguageModelingArgs):
|
298 |
+
"""
|
299 |
+
Model args for a SongNetModel
|
300 |
+
"""
|
301 |
+
|
302 |
+
model_class: str = "SongNetModel"
|
303 |
+
dataset_class: Dataset = None
|
304 |
+
do_sample: bool = False
|
305 |
+
early_stopping: bool = True
|
306 |
+
evaluate_generated_text: bool = False
|
307 |
+
length_penalty: float = 2.0
|
308 |
+
max_length: int = 128
|
309 |
+
min_length: int = 10
|
310 |
+
max_steps: int = -1
|
311 |
+
num_beams: int = 3
|
312 |
+
num_return_sequences: int = 1
|
313 |
+
repetition_penalty: float = 1.0
|
314 |
+
scheduler: str = None
|
315 |
+
adafactor_relative_step: bool = False
|
316 |
+
adafactor_scale_parameter: bool = False
|
317 |
+
adafactor_warmup_init: bool = False
|
318 |
+
learning_rate: float = 1e-3
|
319 |
+
early_stopping_metric: str = "eval_ppl"
|
320 |
+
special_tokens_list: list = field(default_factory=list)
|
321 |
+
save_eval_checkpoints: bool = False
|
322 |
+
skip_special_tokens: bool = False
|
323 |
+
k: int = 16
|
324 |
+
use_multiprocessed_decoding: bool = False
|
325 |
+
embed_dim: int = 768
|
326 |
+
ff_embed_dim: int = 3072
|
327 |
+
num_heads: int = 12
|
328 |
+
num_layers: int = 12
|
329 |
+
dropout: float = 0.2
|
330 |
+
warmup_ratio: float = 0.05
|
331 |
+
weight_decay: float = 0.0
|
332 |
+
smoothing_factor: float = 0.1
|
333 |
+
|
334 |
+
|
335 |
+
@dataclass
|
336 |
+
class ChatGlmArgs(ModelArgs):
|
337 |
+
"""
|
338 |
+
Model args for a ChatGLMModel
|
339 |
+
"""
|
340 |
+
|
341 |
+
model_class: str = "ChatGlmArgs"
|
342 |
+
dataset_class: Dataset = None
|
343 |
+
learning_rate: float = 2e-5
|
344 |
+
fp16: bool = True
|
345 |
+
bf16: bool = False
|
346 |
+
int8: bool = False
|
347 |
+
int4: bool = False
|
348 |
+
debug: bool = False
|
349 |
+
max_seq_length: int = 256 # max length of input sequence
|
350 |
+
max_length = 384 # max length of the sequence to be generated
|
351 |
+
do_sample: bool = True
|
352 |
+
early_stopping: bool = True
|
353 |
+
is_train_on_prompt: bool = False # if compute loss with prompt labels
|
354 |
+
evaluate_generated_text: bool = True
|
355 |
+
report_to = "tensorboard"
|
356 |
+
optimizer: str = "adamw_torch"
|
357 |
+
save_strategy: str = "steps"
|
358 |
+
evaluation_strategy: str = "no"
|
359 |
+
eval_steps: int = 50
|
360 |
+
save_steps: int = 400
|
361 |
+
max_eval_samples: int = 20
|
362 |
+
length_penalty: float = 2.0
|
363 |
+
num_beams: int = 4
|
364 |
+
num_return_sequences: int = 1
|
365 |
+
repetition_penalty: float = 1.0
|
366 |
+
temperature: float = 0.1
|
367 |
+
special_tokens_list: list = field(default_factory=list)
|
368 |
+
top_k: float = 40
|
369 |
+
top_p: float = 0.75
|
370 |
+
model_name_or_path: Optional[str] = field(default="THUDM/chatglm-6b")
|
371 |
+
use_peft: bool = True
|
372 |
+
peft_type: str = "LORA"
|
373 |
+
peft_bin_name: str = "adapter_model.bin"
|
374 |
+
lora_r: int = 8
|
375 |
+
lora_alpha = 32
|
376 |
+
lora_dropout = 0.05
|
377 |
+
lora_target_modules = ["all"] # ["all"] or ["query_key_value"]
|
378 |
+
lora_bias = "none"
|
379 |
+
adalora_init_r: int = 12
|
380 |
+
adalora_tinit: int = 200
|
381 |
+
adalora_tfinal: int = 1000
|
382 |
+
adalora_delta_t: int = 10
|
383 |
+
lora_beta: float = 0.85
|
384 |
+
num_virtual_tokens: int = 20
|
385 |
+
prompt_encoder_hidden_size: int = 128
|
386 |
+
num_train_epochs = 1
|
387 |
+
max_steps = -1
|
388 |
+
per_device_train_batch_size = 2
|
389 |
+
eval_batch_size: int = 4
|
390 |
+
gradient_accumulation_steps = 1
|
391 |
+
gradient_checkpointing: bool = True
|
392 |
+
torch_compile: bool = False
|
393 |
+
save_total_limit = 10
|
394 |
+
remove_unused_columns = False
|
395 |
+
logging_steps = 50
|
396 |
+
resume_from_checkpoint: str = None
|
397 |
+
qlora: bool = False
|
398 |
+
|
399 |
+
|
400 |
+
@dataclass
|
401 |
+
class GptArgs(ModelArgs):
|
402 |
+
"""
|
403 |
+
Model args for a GptModel
|
404 |
+
"""
|
405 |
+
|
406 |
+
model_class: str = "GptArgs"
|
407 |
+
dataset_class: Dataset = None
|
408 |
+
learning_rate: float = 2e-5
|
409 |
+
fp16: bool = True
|
410 |
+
bf16: bool = False
|
411 |
+
int8: bool = False
|
412 |
+
int4: bool = False
|
413 |
+
debug: bool = False
|
414 |
+
max_seq_length: int = 256 # max length of input sequence
|
415 |
+
max_length = 256 # max length of the sequence to be generated
|
416 |
+
do_sample: bool = True
|
417 |
+
early_stopping: bool = True
|
418 |
+
evaluate_generated_text: bool = True
|
419 |
+
is_train_on_prompt: bool = False # if compute loss with prompt labels
|
420 |
+
warmup_steps: int = 50
|
421 |
+
report_to = "tensorboard"
|
422 |
+
optimizer: str = "adamw_torch"
|
423 |
+
save_strategy: str = "steps"
|
424 |
+
eval_steps: int = 200
|
425 |
+
save_steps: int = 400
|
426 |
+
pad_to_multiple_of: int = 8
|
427 |
+
max_eval_samples: int = 20
|
428 |
+
length_penalty: float = 2.0
|
429 |
+
num_beams: int = 1
|
430 |
+
num_return_sequences: int = 1
|
431 |
+
repetition_penalty: float = 1.3
|
432 |
+
temperature: float = 0.4
|
433 |
+
special_tokens_list: list = field(default_factory=list)
|
434 |
+
top_k: float = 40
|
435 |
+
top_p: float = 0.9
|
436 |
+
model_name_or_path: Optional[str] = field(default="shibing624/chinese-alpaca-plus-7b-hf")
|
437 |
+
use_peft: bool = True
|
438 |
+
peft_type: str = "LORA"
|
439 |
+
peft_bin_name: str = "adapter_model.bin"
|
440 |
+
lora_r: int = 8
|
441 |
+
lora_alpha = 16
|
442 |
+
lora_dropout = 0.05
|
443 |
+
lora_target_modules = ["all"] # ["all"] or ["k_proj"]
|
444 |
+
lora_bias = "none"
|
445 |
+
adalora_init_r: int = 12
|
446 |
+
adalora_tinit: int = 200
|
447 |
+
adalora_tfinal: int = 1000
|
448 |
+
adalora_delta_t: int = 10
|
449 |
+
lora_beta: float = 0.85
|
450 |
+
num_virtual_tokens: int = 20
|
451 |
+
prompt_encoder_hidden_size: int = 128
|
452 |
+
num_train_epochs = 3
|
453 |
+
max_steps = -1
|
454 |
+
per_device_train_batch_size = 2
|
455 |
+
eval_batch_size: int = 4
|
456 |
+
gradient_accumulation_steps = 1
|
457 |
+
save_total_limit = 10
|
458 |
+
remove_unused_columns = False
|
459 |
+
logging_steps = 50
|
460 |
+
resume_from_checkpoint: str = None
|
461 |
+
gradient_checkpointing: bool = True
|
462 |
+
torch_compile: bool = False
|
463 |
+
trust_remote_code: bool = True
|
464 |
+
qlora: bool = False
|
t5/t5_model.py
ADDED
@@ -0,0 +1,1256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
@author:XuMing([email protected])
|
4 |
+
@description: refer https://github.com/ThilinaRajapakse/simpletransformers
|
5 |
+
"""
|
6 |
+
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
import random
|
10 |
+
import warnings
|
11 |
+
from dataclasses import asdict
|
12 |
+
from multiprocessing import Pool
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import torch
|
17 |
+
from loguru import logger
|
18 |
+
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
|
19 |
+
from torch.utils.tensorboard import SummaryWriter
|
20 |
+
from tqdm.auto import tqdm, trange
|
21 |
+
from transformers import ByT5Tokenizer
|
22 |
+
from transformers import MT5Config, MT5ForConditionalGeneration
|
23 |
+
from transformers import T5Config, T5ForConditionalGeneration, T5Tokenizer, TextStreamer
|
24 |
+
from transformers.optimization import AdamW, Adafactor
|
25 |
+
from transformers.optimization import (
|
26 |
+
get_constant_schedule,
|
27 |
+
get_constant_schedule_with_warmup,
|
28 |
+
get_linear_schedule_with_warmup,
|
29 |
+
get_cosine_schedule_with_warmup,
|
30 |
+
get_cosine_with_hard_restarts_schedule_with_warmup,
|
31 |
+
get_polynomial_decay_schedule_with_warmup,
|
32 |
+
)
|
33 |
+
|
34 |
+
from t5.config.model_args import T5Args
|
35 |
+
from t5.t5_utils import T5Dataset, load_hf_dataset
|
36 |
+
|
37 |
+
try:
|
38 |
+
import wandb
|
39 |
+
|
40 |
+
wandb_available = True
|
41 |
+
except ImportError:
|
42 |
+
wandb_available = False
|
43 |
+
|
44 |
+
has_cuda = torch.cuda.is_available()
|
45 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "FALSE"
|
46 |
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
47 |
+
|
48 |
+
|
49 |
+
def chunks(lst, n):
|
50 |
+
"""Yield successive n-sized chunks from lst."""
|
51 |
+
for i in range(0, len(lst), n):
|
52 |
+
yield lst[i: i + n]
|
53 |
+
|
54 |
+
|
55 |
+
MODEL_CLASSES = {
|
56 |
+
"t5": (T5Config, T5ForConditionalGeneration),
|
57 |
+
"mt5": (MT5Config, MT5ForConditionalGeneration),
|
58 |
+
"byt5": (T5Config, T5ForConditionalGeneration),
|
59 |
+
}
|
60 |
+
|
61 |
+
|
62 |
+
class T5Model:
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
model_type,
|
66 |
+
model_name,
|
67 |
+
args=None,
|
68 |
+
tokenizer=None,
|
69 |
+
use_cuda=has_cuda,
|
70 |
+
cuda_device=-1,
|
71 |
+
evaluate=False,
|
72 |
+
**kwargs,
|
73 |
+
):
|
74 |
+
|
75 |
+
"""
|
76 |
+
Initializes a T5Model model.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
model_type: The type of model (t5, mt5, byt5)
|
80 |
+
model_name: The exact architecture and trained weights to use. This may be a Hugging Face Transformers compatible pre-trained model, a community model, or the path to a directory containing model files.
|
81 |
+
args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args.
|
82 |
+
use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only.
|
83 |
+
cuda_device (optional): Specific GPU that should be used. Will use the first available GPU by default.
|
84 |
+
**kwargs (optional): For providing proxies, force_download, resume_download, cache_dir and other options specific to the 'from_pretrained' implementation where this will be supplied.
|
85 |
+
""" # noqa: ignore flake8"
|
86 |
+
|
87 |
+
self.args = self._load_model_args(model_name)
|
88 |
+
|
89 |
+
if isinstance(args, dict):
|
90 |
+
self.args.update_from_dict(args)
|
91 |
+
elif isinstance(args, T5Args):
|
92 |
+
self.args = args
|
93 |
+
|
94 |
+
self.is_sweeping = False
|
95 |
+
|
96 |
+
if self.args.manual_seed:
|
97 |
+
random.seed(self.args.manual_seed)
|
98 |
+
np.random.seed(self.args.manual_seed)
|
99 |
+
torch.manual_seed(self.args.manual_seed)
|
100 |
+
if self.args.n_gpu > 0:
|
101 |
+
torch.cuda.manual_seed_all(self.args.manual_seed)
|
102 |
+
|
103 |
+
if use_cuda:
|
104 |
+
if torch.cuda.is_available():
|
105 |
+
if cuda_device == -1:
|
106 |
+
self.device = torch.device("cuda")
|
107 |
+
else:
|
108 |
+
self.device = torch.device(f"cuda:{cuda_device}")
|
109 |
+
else:
|
110 |
+
raise ValueError(
|
111 |
+
"'use_cuda' set to True when cuda is unavailable."
|
112 |
+
"Make sure CUDA is available or set `use_cuda=False`."
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
if torch.backends.mps.is_available():
|
116 |
+
self.device = torch.device("mps")
|
117 |
+
else:
|
118 |
+
self.device = "cpu"
|
119 |
+
logger.debug(f"Device: {self.device}")
|
120 |
+
|
121 |
+
self.results = {}
|
122 |
+
|
123 |
+
config_class, model_class = MODEL_CLASSES[model_type]
|
124 |
+
|
125 |
+
if model_name is None:
|
126 |
+
self.config = self.args.config
|
127 |
+
self.model = model_class(config=self.config)
|
128 |
+
else:
|
129 |
+
self.config = config_class.from_pretrained(model_name, **self.args.config)
|
130 |
+
self.model = model_class.from_pretrained(model_name, config=self.config)
|
131 |
+
|
132 |
+
if isinstance(tokenizer, T5Tokenizer):
|
133 |
+
self.tokenizer = tokenizer
|
134 |
+
self.model.resize_token_embeddings(len(self.tokenizer))
|
135 |
+
elif model_type == "byt5":
|
136 |
+
self.tokenizer = ByT5Tokenizer.from_pretrained(model_name, truncate=True)
|
137 |
+
else:
|
138 |
+
self.tokenizer = T5Tokenizer.from_pretrained(model_name, truncate=True)
|
139 |
+
print(len(self.tokenizer))
|
140 |
+
if not evaluate:
|
141 |
+
with open('./data/字音混淆集_s13.txt', 'r', encoding='utf-8') as confusion:
|
142 |
+
n = 0
|
143 |
+
for line in confusion.readlines()+[str(chr(c+65248)) for c in range(33, 127)]:
|
144 |
+
token = line.split(' ')[0]
|
145 |
+
n+=1
|
146 |
+
self.tokenizer.add_tokens([token])
|
147 |
+
with open('./data/字音混淆集.txt', 'r', encoding='utf-8') as confusion:
|
148 |
+
for line in confusion.readlines():
|
149 |
+
token = line.split(' ')[0]
|
150 |
+
n+=1
|
151 |
+
self.tokenizer.add_tokens([token])
|
152 |
+
with open('./data/wordtest4.txt', 'r', encoding='utf-8') as confusion:
|
153 |
+
for line in confusion.readlines():
|
154 |
+
token = line.split(',')[0]
|
155 |
+
n+=1
|
156 |
+
self.tokenizer.add_tokens([token])
|
157 |
+
|
158 |
+
with open('./data/vocab.txt', 'r', encoding='utf-8') as confusion:
|
159 |
+
for line in confusion.readlines():
|
160 |
+
n+=1
|
161 |
+
self.tokenizer.add_tokens([line.replace('\n', '')])
|
162 |
+
|
163 |
+
print(n)
|
164 |
+
self.streamer = TextStreamer(self.tokenizer)
|
165 |
+
print(len(self.tokenizer))
|
166 |
+
self.model.resize_token_embeddings(len(self.tokenizer))
|
167 |
+
|
168 |
+
if self.args.dynamic_quantize:
|
169 |
+
self.model = torch.quantization.quantize_dynamic(
|
170 |
+
self.model, {torch.nn.Linear}, dtype=torch.qint8
|
171 |
+
)
|
172 |
+
|
173 |
+
if not use_cuda:
|
174 |
+
self.args.fp16 = False
|
175 |
+
|
176 |
+
if self.args.special_tokens_list:
|
177 |
+
self.tokenizer.add_tokens(
|
178 |
+
self.args.special_tokens_list, special_tokens=True
|
179 |
+
)
|
180 |
+
self.model.resize_token_embeddings(len(self.tokenizer))
|
181 |
+
|
182 |
+
self.args.model_type = model_type
|
183 |
+
if model_name is None:
|
184 |
+
self.args.model_name = "T5_from_scratch"
|
185 |
+
else:
|
186 |
+
self.args.model_name = model_name
|
187 |
+
|
188 |
+
if self.args.wandb_project and not wandb_available:
|
189 |
+
warnings.warn(
|
190 |
+
"wandb_project specified but wandb is not available. Wandb disabled."
|
191 |
+
)
|
192 |
+
self.args.wandb_project = None
|
193 |
+
|
194 |
+
def train_model(
|
195 |
+
self,
|
196 |
+
train_data,
|
197 |
+
output_dir=None,
|
198 |
+
show_running_loss=True,
|
199 |
+
args=None,
|
200 |
+
eval_data=None,
|
201 |
+
verbose=True,
|
202 |
+
**kwargs,
|
203 |
+
):
|
204 |
+
"""
|
205 |
+
Trains the model using 'train_data'
|
206 |
+
|
207 |
+
Args:
|
208 |
+
train_data: Pandas DataFrame containing the 3 columns - `prefix`, `input_text`, `target_text`.
|
209 |
+
- `prefix`: A string indicating the task to perform. (E.g. `"question"`, `"stsb"`)
|
210 |
+
- `input_text`: The input text sequence. `prefix` is automatically prepended to form the full input. (<prefix>: <input_text>)
|
211 |
+
- `target_text`: The target sequence
|
212 |
+
output_dir: The directory where model files will be saved. If not given, self.args.output_dir will be used.
|
213 |
+
show_running_loss (optional): Set to False to prevent running loss from being printed to console. Defaults to True.
|
214 |
+
args (optional): Optional changes to the args dict of the model. Any changes made will persist for the model.
|
215 |
+
eval_data (optional): A DataFrame against which evaluation will be performed when evaluate_during_training is enabled. Is required if evaluate_during_training is enabled.
|
216 |
+
**kwargs: Additional metrics that should be used. Pass in the metrics as keyword arguments (name of metric: function to use).
|
217 |
+
A metric function should take in two parameters. The first parameter will be the true labels, and the second parameter will be the predictions. Both inputs
|
218 |
+
will be lists of strings. Note that this will slow down training significantly as the predicted sequences need to be generated.
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
global_step: Number of global steps trained
|
222 |
+
training_details: Average training loss if evaluate_during_training is False or full training progress scores if evaluate_during_training is True
|
223 |
+
""" # noqa: ignore flake8"
|
224 |
+
|
225 |
+
if args:
|
226 |
+
self.args.update_from_dict(args)
|
227 |
+
if self.args.evaluate_during_training and eval_data is None:
|
228 |
+
raise ValueError(
|
229 |
+
"evaluate_during_training is enabled but eval_data is not specified."
|
230 |
+
" Pass eval_data to model.train_model() if using evaluate_during_training."
|
231 |
+
)
|
232 |
+
|
233 |
+
if not output_dir:
|
234 |
+
output_dir = self.args.output_dir
|
235 |
+
|
236 |
+
if (
|
237 |
+
os.path.exists(output_dir)
|
238 |
+
and os.listdir(output_dir)
|
239 |
+
and not self.args.overwrite_output_dir
|
240 |
+
):
|
241 |
+
raise ValueError(
|
242 |
+
"Output directory ({}) already exists and is not empty."
|
243 |
+
" Set args.overwrite_output_dir = True to overcome.".format(output_dir)
|
244 |
+
)
|
245 |
+
|
246 |
+
self._move_model_to_device()
|
247 |
+
|
248 |
+
train_dataset = self.load_and_cache_examples(train_data, verbose=verbose)
|
249 |
+
|
250 |
+
os.makedirs(output_dir, exist_ok=True)
|
251 |
+
|
252 |
+
global_step, training_details = self.train(
|
253 |
+
train_dataset,
|
254 |
+
output_dir,
|
255 |
+
show_running_loss=show_running_loss,
|
256 |
+
eval_data=eval_data,
|
257 |
+
verbose=verbose,
|
258 |
+
**kwargs,
|
259 |
+
)
|
260 |
+
|
261 |
+
self.save_model(model=self.model)
|
262 |
+
|
263 |
+
if verbose:
|
264 |
+
logger.info(
|
265 |
+
" Training of {} model complete. Saved to {}.".format(
|
266 |
+
self.args.model_name, output_dir
|
267 |
+
)
|
268 |
+
)
|
269 |
+
|
270 |
+
return global_step, training_details
|
271 |
+
|
272 |
+
def train(
|
273 |
+
self,
|
274 |
+
train_dataset,
|
275 |
+
output_dir,
|
276 |
+
show_running_loss=True,
|
277 |
+
eval_data=None,
|
278 |
+
verbose=True,
|
279 |
+
**kwargs,
|
280 |
+
):
|
281 |
+
"""
|
282 |
+
Trains the model on train_dataset.
|
283 |
+
|
284 |
+
Utility function to be used by the train_model() method. Not intended to be used directly.
|
285 |
+
"""
|
286 |
+
|
287 |
+
model = self.model
|
288 |
+
args = self.args
|
289 |
+
device = self.device
|
290 |
+
|
291 |
+
tb_writer = SummaryWriter(log_dir=args.tensorboard_dir)
|
292 |
+
train_sampler = RandomSampler(train_dataset)
|
293 |
+
train_dataloader = DataLoader(
|
294 |
+
train_dataset,
|
295 |
+
sampler=train_sampler,
|
296 |
+
batch_size=args.train_batch_size,
|
297 |
+
num_workers=self.args.dataloader_num_workers,
|
298 |
+
)
|
299 |
+
|
300 |
+
if args.max_steps > 0:
|
301 |
+
t_total = args.max_steps
|
302 |
+
args.num_train_epochs = (
|
303 |
+
args.max_steps
|
304 |
+
// (len(train_dataloader) // args.gradient_accumulation_steps)
|
305 |
+
+ 1
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
t_total = (
|
309 |
+
len(train_dataloader)
|
310 |
+
// args.gradient_accumulation_steps
|
311 |
+
* args.num_train_epochs
|
312 |
+
)
|
313 |
+
|
314 |
+
no_decay = ["bias", "LayerNorm.weight"]
|
315 |
+
|
316 |
+
optimizer_grouped_parameters = []
|
317 |
+
custom_parameter_names = set()
|
318 |
+
for group in self.args.custom_parameter_groups:
|
319 |
+
params = group.pop("params")
|
320 |
+
custom_parameter_names.update(params)
|
321 |
+
param_group = {**group}
|
322 |
+
param_group["params"] = [
|
323 |
+
p for n, p in model.named_parameters() if n in params
|
324 |
+
]
|
325 |
+
optimizer_grouped_parameters.append(param_group)
|
326 |
+
|
327 |
+
for group in self.args.custom_layer_parameters:
|
328 |
+
layer_number = group.pop("layer")
|
329 |
+
layer = f"layer.{layer_number}."
|
330 |
+
group_d = {**group}
|
331 |
+
group_nd = {**group}
|
332 |
+
group_nd["weight_decay"] = 0.0
|
333 |
+
params_d = []
|
334 |
+
params_nd = []
|
335 |
+
for n, p in model.named_parameters():
|
336 |
+
if n not in custom_parameter_names and layer in n:
|
337 |
+
if any(nd in n for nd in no_decay):
|
338 |
+
params_nd.append(p)
|
339 |
+
else:
|
340 |
+
params_d.append(p)
|
341 |
+
custom_parameter_names.add(n)
|
342 |
+
group_d["params"] = params_d
|
343 |
+
group_nd["params"] = params_nd
|
344 |
+
|
345 |
+
optimizer_grouped_parameters.append(group_d)
|
346 |
+
optimizer_grouped_parameters.append(group_nd)
|
347 |
+
|
348 |
+
if not self.args.train_custom_parameters_only:
|
349 |
+
optimizer_grouped_parameters.extend(
|
350 |
+
[
|
351 |
+
{
|
352 |
+
"params": [
|
353 |
+
p
|
354 |
+
for n, p in model.named_parameters()
|
355 |
+
if n not in custom_parameter_names
|
356 |
+
and not any(nd in n for nd in no_decay)
|
357 |
+
],
|
358 |
+
"weight_decay": args.weight_decay,
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"params": [
|
362 |
+
p
|
363 |
+
for n, p in model.named_parameters()
|
364 |
+
if n not in custom_parameter_names
|
365 |
+
and any(nd in n for nd in no_decay)
|
366 |
+
],
|
367 |
+
"weight_decay": 0.0,
|
368 |
+
},
|
369 |
+
]
|
370 |
+
)
|
371 |
+
|
372 |
+
warmup_steps = math.ceil(t_total * args.warmup_ratio)
|
373 |
+
args.warmup_steps = (
|
374 |
+
warmup_steps if args.warmup_steps == 0 else args.warmup_steps
|
375 |
+
)
|
376 |
+
|
377 |
+
if args.optimizer == "AdamW":
|
378 |
+
optimizer = AdamW(
|
379 |
+
optimizer_grouped_parameters,
|
380 |
+
lr=args.learning_rate,
|
381 |
+
eps=args.adam_epsilon,
|
382 |
+
)
|
383 |
+
elif args.optimizer == "Adafactor":
|
384 |
+
optimizer = Adafactor(
|
385 |
+
optimizer_grouped_parameters,
|
386 |
+
lr=args.learning_rate,
|
387 |
+
eps=args.adafactor_eps,
|
388 |
+
clip_threshold=args.adafactor_clip_threshold,
|
389 |
+
decay_rate=args.adafactor_decay_rate,
|
390 |
+
beta1=args.adafactor_beta1,
|
391 |
+
weight_decay=args.weight_decay,
|
392 |
+
scale_parameter=args.adafactor_scale_parameter,
|
393 |
+
relative_step=args.adafactor_relative_step,
|
394 |
+
warmup_init=args.adafactor_warmup_init,
|
395 |
+
)
|
396 |
+
|
397 |
+
else:
|
398 |
+
raise ValueError(
|
399 |
+
"{} is not a valid optimizer class. Please use one of ('AdamW', 'Adafactor') instead.".format(
|
400 |
+
args.optimizer
|
401 |
+
)
|
402 |
+
)
|
403 |
+
|
404 |
+
if args.scheduler == "constant_schedule":
|
405 |
+
scheduler = get_constant_schedule(optimizer)
|
406 |
+
|
407 |
+
elif args.scheduler == "constant_schedule_with_warmup":
|
408 |
+
scheduler = get_constant_schedule_with_warmup(
|
409 |
+
optimizer, num_warmup_steps=args.warmup_steps
|
410 |
+
)
|
411 |
+
|
412 |
+
elif args.scheduler == "linear_schedule_with_warmup":
|
413 |
+
scheduler = get_linear_schedule_with_warmup(
|
414 |
+
optimizer,
|
415 |
+
num_warmup_steps=args.warmup_steps,
|
416 |
+
num_training_steps=t_total,
|
417 |
+
)
|
418 |
+
|
419 |
+
elif args.scheduler == "cosine_schedule_with_warmup":
|
420 |
+
scheduler = get_cosine_schedule_with_warmup(
|
421 |
+
optimizer,
|
422 |
+
num_warmup_steps=args.warmup_steps,
|
423 |
+
num_training_steps=t_total,
|
424 |
+
num_cycles=args.cosine_schedule_num_cycles,
|
425 |
+
)
|
426 |
+
|
427 |
+
elif args.scheduler == "cosine_with_hard_restarts_schedule_with_warmup":
|
428 |
+
scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
|
429 |
+
optimizer,
|
430 |
+
num_warmup_steps=args.warmup_steps,
|
431 |
+
num_training_steps=t_total,
|
432 |
+
num_cycles=args.cosine_schedule_num_cycles,
|
433 |
+
)
|
434 |
+
|
435 |
+
elif args.scheduler == "polynomial_decay_schedule_with_warmup":
|
436 |
+
scheduler = get_polynomial_decay_schedule_with_warmup(
|
437 |
+
optimizer,
|
438 |
+
num_warmup_steps=args.warmup_steps,
|
439 |
+
num_training_steps=t_total,
|
440 |
+
lr_end=args.polynomial_decay_schedule_lr_end,
|
441 |
+
power=args.polynomial_decay_schedule_power,
|
442 |
+
)
|
443 |
+
|
444 |
+
else:
|
445 |
+
raise ValueError("{} is not a valid scheduler.".format(args.scheduler))
|
446 |
+
|
447 |
+
if (
|
448 |
+
args.model_name
|
449 |
+
and os.path.isfile(os.path.join(args.model_name, "optimizer.pt"))
|
450 |
+
and os.path.isfile(os.path.join(args.model_name, "scheduler.pt"))
|
451 |
+
):
|
452 |
+
# Load in optimizer and scheduler states
|
453 |
+
optimizer.load_state_dict(
|
454 |
+
torch.load(os.path.join(args.model_name, "optimizer.pt"))
|
455 |
+
)
|
456 |
+
scheduler.load_state_dict(
|
457 |
+
torch.load(os.path.join(args.model_name, "scheduler.pt"))
|
458 |
+
)
|
459 |
+
|
460 |
+
if args.n_gpu > 1:
|
461 |
+
model = torch.nn.DataParallel(model)
|
462 |
+
|
463 |
+
logger.info(" Training started")
|
464 |
+
|
465 |
+
global_step = 0
|
466 |
+
training_progress_scores = None
|
467 |
+
tr_loss, logging_loss = 0.0, 0.0
|
468 |
+
model.zero_grad()
|
469 |
+
train_iterator = trange(
|
470 |
+
int(args.num_train_epochs), desc="Epoch", disable=args.silent, mininterval=0
|
471 |
+
)
|
472 |
+
epoch_number = 0
|
473 |
+
best_eval_metric = None
|
474 |
+
early_stopping_counter = 0
|
475 |
+
steps_trained_in_current_epoch = 0
|
476 |
+
epochs_trained = 0
|
477 |
+
|
478 |
+
if args.model_name and os.path.exists(args.model_name):
|
479 |
+
try:
|
480 |
+
# set global_step to gobal_step of last saved checkpoint from model path
|
481 |
+
checkpoint_suffix = args.model_name.split("/")[-1].split("-")
|
482 |
+
if len(checkpoint_suffix) > 2:
|
483 |
+
checkpoint_suffix = checkpoint_suffix[1]
|
484 |
+
else:
|
485 |
+
checkpoint_suffix = checkpoint_suffix[-1]
|
486 |
+
global_step = int(checkpoint_suffix)
|
487 |
+
epochs_trained = global_step // (
|
488 |
+
len(train_dataloader) // args.gradient_accumulation_steps
|
489 |
+
)
|
490 |
+
steps_trained_in_current_epoch = global_step % (
|
491 |
+
len(train_dataloader) // args.gradient_accumulation_steps
|
492 |
+
)
|
493 |
+
|
494 |
+
logger.info(
|
495 |
+
" Continuing training from checkpoint, will skip to saved global_step"
|
496 |
+
)
|
497 |
+
logger.info(" Continuing training from epoch %d", epochs_trained)
|
498 |
+
logger.info(" Continuing training from global step %d", global_step)
|
499 |
+
logger.info(
|
500 |
+
" Will skip the first %d steps in the current epoch",
|
501 |
+
steps_trained_in_current_epoch,
|
502 |
+
)
|
503 |
+
except ValueError:
|
504 |
+
logger.info(" Starting fine-tuning.")
|
505 |
+
|
506 |
+
if args.evaluate_during_training:
|
507 |
+
training_progress_scores = self._create_training_progress_scores(**kwargs)
|
508 |
+
|
509 |
+
if args.wandb_project:
|
510 |
+
wandb.init(
|
511 |
+
project=args.wandb_project,
|
512 |
+
config={**asdict(args)},
|
513 |
+
**args.wandb_kwargs,
|
514 |
+
)
|
515 |
+
wandb.run._label(repo="textgen")
|
516 |
+
wandb.watch(self.model)
|
517 |
+
self.wandb_run_id = wandb.run.id
|
518 |
+
|
519 |
+
if args.fp16:
|
520 |
+
from torch.cuda import amp
|
521 |
+
|
522 |
+
scaler = amp.GradScaler()
|
523 |
+
|
524 |
+
for current_epoch in train_iterator:
|
525 |
+
model.train()
|
526 |
+
if epochs_trained > 0:
|
527 |
+
epochs_trained -= 1
|
528 |
+
continue
|
529 |
+
train_iterator.set_description(
|
530 |
+
f"Epoch {epoch_number + 1} of {args.num_train_epochs}"
|
531 |
+
)
|
532 |
+
batch_iterator = tqdm(
|
533 |
+
train_dataloader,
|
534 |
+
desc=f"Running Epoch {epoch_number} of {args.num_train_epochs}",
|
535 |
+
disable=args.silent,
|
536 |
+
mininterval=0,
|
537 |
+
)
|
538 |
+
for step, batch in enumerate(batch_iterator):
|
539 |
+
if steps_trained_in_current_epoch > 0:
|
540 |
+
steps_trained_in_current_epoch -= 1
|
541 |
+
continue
|
542 |
+
|
543 |
+
inputs = self._get_inputs_dict(batch)
|
544 |
+
if args.fp16:
|
545 |
+
with amp.autocast():
|
546 |
+
outputs = model(**inputs)
|
547 |
+
# model outputs are always tuple in pytorch-transformers (see doc)
|
548 |
+
loss = outputs[0]
|
549 |
+
else:
|
550 |
+
outputs = model(**inputs)
|
551 |
+
# model outputs are always tuple in pytorch-transformers (see doc)
|
552 |
+
loss = outputs[0]
|
553 |
+
|
554 |
+
if args.n_gpu > 1:
|
555 |
+
loss = (
|
556 |
+
loss.mean()
|
557 |
+
) # mean() to average on multi-gpu parallel training
|
558 |
+
|
559 |
+
current_loss = loss.item()
|
560 |
+
|
561 |
+
if show_running_loss:
|
562 |
+
batch_iterator.set_description(
|
563 |
+
f"Epochs {epoch_number}/{args.num_train_epochs}. Running Loss: {current_loss:9.4f}"
|
564 |
+
)
|
565 |
+
|
566 |
+
if args.gradient_accumulation_steps > 1:
|
567 |
+
loss = loss / args.gradient_accumulation_steps
|
568 |
+
|
569 |
+
if args.fp16:
|
570 |
+
scaler.scale(loss).backward()
|
571 |
+
else:
|
572 |
+
loss.backward()
|
573 |
+
|
574 |
+
tr_loss += loss.item()
|
575 |
+
if (step + 1) % args.gradient_accumulation_steps == 0:
|
576 |
+
if args.fp16:
|
577 |
+
scaler.unscale_(optimizer)
|
578 |
+
if args.optimizer == "AdamW":
|
579 |
+
torch.nn.utils.clip_grad_norm_(
|
580 |
+
model.parameters(), args.max_grad_norm
|
581 |
+
)
|
582 |
+
|
583 |
+
if args.fp16:
|
584 |
+
scaler.step(optimizer)
|
585 |
+
scaler.update()
|
586 |
+
else:
|
587 |
+
optimizer.step()
|
588 |
+
scheduler.step() # Update learning rate schedule
|
589 |
+
model.zero_grad()
|
590 |
+
global_step += 1
|
591 |
+
|
592 |
+
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
593 |
+
# Log metrics
|
594 |
+
tb_writer.add_scalar(
|
595 |
+
"lr", scheduler.get_last_lr()[0], global_step
|
596 |
+
)
|
597 |
+
tb_writer.add_scalar(
|
598 |
+
"loss",
|
599 |
+
(tr_loss - logging_loss) / args.logging_steps,
|
600 |
+
global_step,
|
601 |
+
)
|
602 |
+
logging_loss = tr_loss
|
603 |
+
if args.wandb_project or self.is_sweeping:
|
604 |
+
wandb.log(
|
605 |
+
{
|
606 |
+
"Training loss": current_loss,
|
607 |
+
"lr": scheduler.get_last_lr()[0],
|
608 |
+
"global_step": global_step,
|
609 |
+
}
|
610 |
+
)
|
611 |
+
|
612 |
+
if args.save_steps > 0 and global_step % args.save_steps == 0:
|
613 |
+
# Save model checkpoint
|
614 |
+
output_dir_current = os.path.join(
|
615 |
+
output_dir, "checkpoint-{}".format(global_step)
|
616 |
+
)
|
617 |
+
|
618 |
+
self.save_model(
|
619 |
+
output_dir_current, optimizer, scheduler, model=model
|
620 |
+
)
|
621 |
+
|
622 |
+
if args.evaluate_during_training and (
|
623 |
+
args.evaluate_during_training_steps > 0
|
624 |
+
and global_step % args.evaluate_during_training_steps == 0
|
625 |
+
):
|
626 |
+
# Only evaluate when single GPU otherwise metrics may not average well
|
627 |
+
results = self.eval_model(
|
628 |
+
eval_data,
|
629 |
+
verbose=verbose and args.evaluate_during_training_verbose,
|
630 |
+
silent=args.evaluate_during_training_silent,
|
631 |
+
**kwargs,
|
632 |
+
)
|
633 |
+
for key, value in results.items():
|
634 |
+
try:
|
635 |
+
tb_writer.add_scalar(
|
636 |
+
"eval_{}".format(key), value, global_step
|
637 |
+
)
|
638 |
+
except (NotImplementedError, AssertionError):
|
639 |
+
pass
|
640 |
+
|
641 |
+
output_dir_current = os.path.join(
|
642 |
+
output_dir, "checkpoint-{}".format(global_step)
|
643 |
+
)
|
644 |
+
|
645 |
+
if args.save_eval_checkpoints:
|
646 |
+
self.save_model(
|
647 |
+
output_dir_current,
|
648 |
+
optimizer,
|
649 |
+
scheduler,
|
650 |
+
model=model,
|
651 |
+
results=results,
|
652 |
+
)
|
653 |
+
|
654 |
+
training_progress_scores["global_step"].append(global_step)
|
655 |
+
training_progress_scores["train_loss"].append(current_loss)
|
656 |
+
for key in results:
|
657 |
+
training_progress_scores[key].append(results[key])
|
658 |
+
report = pd.DataFrame(training_progress_scores)
|
659 |
+
report.to_csv(
|
660 |
+
os.path.join(
|
661 |
+
args.output_dir, "training_progress_scores.csv"
|
662 |
+
),
|
663 |
+
index=False,
|
664 |
+
)
|
665 |
+
|
666 |
+
if args.wandb_project or self.is_sweeping:
|
667 |
+
wandb.log(self._get_last_metrics(training_progress_scores))
|
668 |
+
|
669 |
+
if not best_eval_metric:
|
670 |
+
best_eval_metric = results[args.early_stopping_metric]
|
671 |
+
self.save_model(
|
672 |
+
args.best_model_dir,
|
673 |
+
optimizer,
|
674 |
+
scheduler,
|
675 |
+
model=model,
|
676 |
+
results=results,
|
677 |
+
)
|
678 |
+
if best_eval_metric and args.early_stopping_metric_minimize:
|
679 |
+
if (
|
680 |
+
results[args.early_stopping_metric] - best_eval_metric
|
681 |
+
< args.early_stopping_delta
|
682 |
+
):
|
683 |
+
best_eval_metric = results[args.early_stopping_metric]
|
684 |
+
self.save_model(
|
685 |
+
args.best_model_dir,
|
686 |
+
optimizer,
|
687 |
+
scheduler,
|
688 |
+
model=model,
|
689 |
+
results=results,
|
690 |
+
)
|
691 |
+
early_stopping_counter = 0
|
692 |
+
else:
|
693 |
+
if args.use_early_stopping:
|
694 |
+
if (
|
695 |
+
early_stopping_counter
|
696 |
+
< args.early_stopping_patience
|
697 |
+
):
|
698 |
+
early_stopping_counter += 1
|
699 |
+
if verbose:
|
700 |
+
logger.info(
|
701 |
+
f" No improvement in {args.early_stopping_metric}"
|
702 |
+
)
|
703 |
+
logger.info(
|
704 |
+
f" Current step: {early_stopping_counter}"
|
705 |
+
)
|
706 |
+
logger.info(
|
707 |
+
f" Early stopping patience: {args.early_stopping_patience}"
|
708 |
+
)
|
709 |
+
else:
|
710 |
+
if verbose:
|
711 |
+
logger.info(
|
712 |
+
f" Patience of {args.early_stopping_patience} steps reached"
|
713 |
+
)
|
714 |
+
logger.info(" Training terminated.")
|
715 |
+
train_iterator.close()
|
716 |
+
return (
|
717 |
+
global_step,
|
718 |
+
tr_loss / global_step
|
719 |
+
if not self.args.evaluate_during_training
|
720 |
+
else training_progress_scores,
|
721 |
+
)
|
722 |
+
else:
|
723 |
+
if (
|
724 |
+
results[args.early_stopping_metric] - best_eval_metric
|
725 |
+
> args.early_stopping_delta
|
726 |
+
):
|
727 |
+
best_eval_metric = results[args.early_stopping_metric]
|
728 |
+
self.save_model(
|
729 |
+
args.best_model_dir,
|
730 |
+
optimizer,
|
731 |
+
scheduler,
|
732 |
+
model=model,
|
733 |
+
results=results,
|
734 |
+
)
|
735 |
+
early_stopping_counter = 0
|
736 |
+
else:
|
737 |
+
if args.use_early_stopping:
|
738 |
+
if (
|
739 |
+
early_stopping_counter
|
740 |
+
< args.early_stopping_patience
|
741 |
+
):
|
742 |
+
early_stopping_counter += 1
|
743 |
+
if verbose:
|
744 |
+
logger.info(
|
745 |
+
f" No improvement in {args.early_stopping_metric}"
|
746 |
+
)
|
747 |
+
logger.info(
|
748 |
+
f" Current step: {early_stopping_counter}"
|
749 |
+
)
|
750 |
+
logger.info(
|
751 |
+
f" Early stopping patience: {args.early_stopping_patience}"
|
752 |
+
)
|
753 |
+
else:
|
754 |
+
if verbose:
|
755 |
+
logger.info(
|
756 |
+
f" Patience of {args.early_stopping_patience} steps reached"
|
757 |
+
)
|
758 |
+
logger.info(" Training terminated.")
|
759 |
+
train_iterator.close()
|
760 |
+
return (
|
761 |
+
global_step,
|
762 |
+
tr_loss / global_step
|
763 |
+
if not self.args.evaluate_during_training
|
764 |
+
else training_progress_scores,
|
765 |
+
)
|
766 |
+
model.train()
|
767 |
+
|
768 |
+
epoch_number += 1
|
769 |
+
output_dir_current = os.path.join(
|
770 |
+
output_dir, "checkpoint-{}-epoch-{}".format(global_step, epoch_number)
|
771 |
+
)
|
772 |
+
|
773 |
+
if args.save_model_every_epoch:
|
774 |
+
self.save_model(output_dir_current, optimizer, scheduler, model=model)
|
775 |
+
|
776 |
+
if args.evaluate_during_training and args.evaluate_each_epoch:
|
777 |
+
results = self.eval_model(
|
778 |
+
eval_data,
|
779 |
+
verbose=verbose and args.evaluate_during_training_verbose,
|
780 |
+
silent=args.evaluate_during_training_silent,
|
781 |
+
**kwargs,
|
782 |
+
)
|
783 |
+
|
784 |
+
if args.save_eval_checkpoints:
|
785 |
+
self.save_model(
|
786 |
+
output_dir_current, optimizer, scheduler, results=results
|
787 |
+
)
|
788 |
+
|
789 |
+
training_progress_scores["global_step"].append(global_step)
|
790 |
+
training_progress_scores["train_loss"].append(current_loss)
|
791 |
+
for key in results:
|
792 |
+
training_progress_scores[key].append(results[key])
|
793 |
+
report = pd.DataFrame(training_progress_scores)
|
794 |
+
report.to_csv(
|
795 |
+
os.path.join(args.output_dir, "training_progress_scores.csv"),
|
796 |
+
index=False,
|
797 |
+
)
|
798 |
+
|
799 |
+
if args.wandb_project or self.is_sweeping:
|
800 |
+
wandb.log(self._get_last_metrics(training_progress_scores))
|
801 |
+
|
802 |
+
if not best_eval_metric:
|
803 |
+
best_eval_metric = results[args.early_stopping_metric]
|
804 |
+
self.save_model(
|
805 |
+
args.best_model_dir,
|
806 |
+
optimizer,
|
807 |
+
scheduler,
|
808 |
+
model=model,
|
809 |
+
results=results,
|
810 |
+
)
|
811 |
+
if best_eval_metric and args.early_stopping_metric_minimize:
|
812 |
+
if (
|
813 |
+
results[args.early_stopping_metric] - best_eval_metric
|
814 |
+
< args.early_stopping_delta
|
815 |
+
):
|
816 |
+
best_eval_metric = results[args.early_stopping_metric]
|
817 |
+
self.save_model(
|
818 |
+
args.best_model_dir,
|
819 |
+
optimizer,
|
820 |
+
scheduler,
|
821 |
+
model=model,
|
822 |
+
results=results,
|
823 |
+
)
|
824 |
+
early_stopping_counter = 0
|
825 |
+
else:
|
826 |
+
if (
|
827 |
+
args.use_early_stopping
|
828 |
+
and args.early_stopping_consider_epochs
|
829 |
+
):
|
830 |
+
if early_stopping_counter < args.early_stopping_patience:
|
831 |
+
early_stopping_counter += 1
|
832 |
+
if verbose:
|
833 |
+
logger.info(
|
834 |
+
f" No improvement in {args.early_stopping_metric}"
|
835 |
+
)
|
836 |
+
logger.info(
|
837 |
+
f" Current step: {early_stopping_counter}"
|
838 |
+
)
|
839 |
+
logger.info(
|
840 |
+
f" Early stopping patience: {args.early_stopping_patience}"
|
841 |
+
)
|
842 |
+
else:
|
843 |
+
if verbose:
|
844 |
+
logger.info(
|
845 |
+
f" Patience of {args.early_stopping_patience} steps reached"
|
846 |
+
)
|
847 |
+
logger.info(" Training terminated.")
|
848 |
+
train_iterator.close()
|
849 |
+
return (
|
850 |
+
global_step,
|
851 |
+
tr_loss / global_step
|
852 |
+
if not self.args.evaluate_during_training
|
853 |
+
else training_progress_scores,
|
854 |
+
)
|
855 |
+
else:
|
856 |
+
if (
|
857 |
+
results[args.early_stopping_metric] - best_eval_metric
|
858 |
+
> args.early_stopping_delta
|
859 |
+
):
|
860 |
+
best_eval_metric = results[args.early_stopping_metric]
|
861 |
+
self.save_model(
|
862 |
+
args.best_model_dir,
|
863 |
+
optimizer,
|
864 |
+
scheduler,
|
865 |
+
model=model,
|
866 |
+
results=results,
|
867 |
+
)
|
868 |
+
early_stopping_counter = 0
|
869 |
+
else:
|
870 |
+
if (
|
871 |
+
args.use_early_stopping
|
872 |
+
and args.early_stopping_consider_epochs
|
873 |
+
):
|
874 |
+
if early_stopping_counter < args.early_stopping_patience:
|
875 |
+
early_stopping_counter += 1
|
876 |
+
if verbose:
|
877 |
+
logger.info(
|
878 |
+
f" No improvement in {args.early_stopping_metric}"
|
879 |
+
)
|
880 |
+
logger.info(
|
881 |
+
f" Current step: {early_stopping_counter}"
|
882 |
+
)
|
883 |
+
logger.info(
|
884 |
+
f" Early stopping patience: {args.early_stopping_patience}"
|
885 |
+
)
|
886 |
+
else:
|
887 |
+
if verbose:
|
888 |
+
logger.info(
|
889 |
+
f" Patience of {args.early_stopping_patience} steps reached"
|
890 |
+
)
|
891 |
+
logger.info(" Training terminated.")
|
892 |
+
train_iterator.close()
|
893 |
+
return (
|
894 |
+
global_step,
|
895 |
+
tr_loss / global_step
|
896 |
+
if not self.args.evaluate_during_training
|
897 |
+
else training_progress_scores,
|
898 |
+
)
|
899 |
+
|
900 |
+
return (
|
901 |
+
global_step,
|
902 |
+
tr_loss / global_step
|
903 |
+
if not self.args.evaluate_during_training
|
904 |
+
else training_progress_scores,
|
905 |
+
)
|
906 |
+
|
907 |
+
def eval_model(
|
908 |
+
self, eval_data, output_dir=None, verbose=True, silent=False, **kwargs
|
909 |
+
):
|
910 |
+
"""
|
911 |
+
Evaluates the model on eval_data. Saves results to output_dir.
|
912 |
+
|
913 |
+
Args:
|
914 |
+
eval_data: Pandas DataFrame containing the 3 columns - `prefix`, `input_text`, `target_text`.
|
915 |
+
- `prefix`: A string indicating the task to perform. (E.g. `"question"`, `"stsb"`)
|
916 |
+
- `input_text`: The input text sequence. `prefix` is automatically prepended to form the full input. (<prefix>: <input_text>)
|
917 |
+
- `target_text`: The target sequence
|
918 |
+
output_dir: The directory where model files will be saved. If not given, self.args.output_dir will be used.
|
919 |
+
verbose: If verbose, results will be printed to the console on completion of evaluation.
|
920 |
+
silent: If silent, tqdm progress bars will be hidden.
|
921 |
+
**kwargs: Additional metrics that should be used. Pass in the metrics as keyword arguments (name of metric: function to use).
|
922 |
+
A metric function should take in two parameters. The first parameter will be the true labels, and the second parameter will be the predictions. Both inputs
|
923 |
+
will be lists of strings. Note that this will slow down evaluation significantly as the predicted sequences need to be generated.
|
924 |
+
Returns:
|
925 |
+
results: Dictionary containing evaluation results.
|
926 |
+
""" # noqa: ignore flake8"
|
927 |
+
|
928 |
+
if not output_dir:
|
929 |
+
output_dir = self.args.output_dir
|
930 |
+
|
931 |
+
self._move_model_to_device()
|
932 |
+
|
933 |
+
eval_dataset = self.load_and_cache_examples(
|
934 |
+
eval_data, evaluate=True, verbose=verbose, silent=silent
|
935 |
+
)
|
936 |
+
os.makedirs(output_dir, exist_ok=True)
|
937 |
+
|
938 |
+
result = self.evaluate(
|
939 |
+
eval_dataset, output_dir, verbose=verbose, silent=silent, **kwargs
|
940 |
+
)
|
941 |
+
self.results.update(result)
|
942 |
+
|
943 |
+
if self.args.evaluate_generated_text:
|
944 |
+
if self.args.preprocess_inputs:
|
945 |
+
to_predict = [
|
946 |
+
input_text
|
947 |
+
for prefix, input_text in zip(
|
948 |
+
eval_data["prefix"], eval_data["input_text"]
|
949 |
+
)
|
950 |
+
]
|
951 |
+
else:
|
952 |
+
to_predict = [
|
953 |
+
prefix + input_text
|
954 |
+
for prefix, input_text in zip(
|
955 |
+
eval_data["prefix"], eval_data["input_text"]
|
956 |
+
)
|
957 |
+
]
|
958 |
+
preds = self.predict(to_predict[:self.args.eval_batch_size*3])
|
959 |
+
|
960 |
+
result = self.compute_metrics(
|
961 |
+
eval_data["target_text"].tolist()[:self.args.eval_batch_size*3], preds, **kwargs
|
962 |
+
)
|
963 |
+
self.results.update(result)
|
964 |
+
|
965 |
+
if verbose:
|
966 |
+
logger.info(self.results)
|
967 |
+
|
968 |
+
return self.results
|
969 |
+
|
970 |
+
def evaluate(self, eval_dataset, output_dir, verbose=True, silent=False, **kwargs):
|
971 |
+
"""
|
972 |
+
Evaluates the model on eval_dataset.
|
973 |
+
|
974 |
+
Utility function to be used by the eval_model() method. Not intended to be used directly.
|
975 |
+
"""
|
976 |
+
|
977 |
+
model = self.model
|
978 |
+
args = self.args
|
979 |
+
eval_output_dir = output_dir
|
980 |
+
device = self.device
|
981 |
+
|
982 |
+
results = {}
|
983 |
+
|
984 |
+
eval_sampler = SequentialSampler(eval_dataset)
|
985 |
+
eval_dataloader = DataLoader(
|
986 |
+
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size
|
987 |
+
)
|
988 |
+
|
989 |
+
if args.n_gpu > 1:
|
990 |
+
model = torch.nn.DataParallel(model)
|
991 |
+
|
992 |
+
eval_loss = 0.0
|
993 |
+
nb_eval_steps = 0
|
994 |
+
model.eval()
|
995 |
+
|
996 |
+
if self.args.fp16:
|
997 |
+
from torch.cuda import amp
|
998 |
+
|
999 |
+
for batch in tqdm(
|
1000 |
+
eval_dataloader, disable=args.silent or silent, desc="Running Evaluation"
|
1001 |
+
):
|
1002 |
+
inputs = self._get_inputs_dict(batch)
|
1003 |
+
with torch.no_grad():
|
1004 |
+
if self.args.fp16:
|
1005 |
+
with amp.autocast():
|
1006 |
+
outputs = model(**inputs)
|
1007 |
+
loss = outputs[0]
|
1008 |
+
else:
|
1009 |
+
outputs = model(**inputs)
|
1010 |
+
loss = outputs[0]
|
1011 |
+
if self.args.n_gpu > 1:
|
1012 |
+
loss = loss.mean()
|
1013 |
+
eval_loss += loss.item()
|
1014 |
+
nb_eval_steps += 1
|
1015 |
+
|
1016 |
+
eval_loss = eval_loss / nb_eval_steps
|
1017 |
+
|
1018 |
+
results["eval_loss"] = eval_loss
|
1019 |
+
|
1020 |
+
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
|
1021 |
+
with open(output_eval_file, "w") as writer:
|
1022 |
+
for key in sorted(results.keys()):
|
1023 |
+
writer.write("{} = {}\n".format(key, str(results[key])))
|
1024 |
+
|
1025 |
+
return results
|
1026 |
+
|
1027 |
+
def predict(self, to_predict, split_on_space=False):
|
1028 |
+
"""
|
1029 |
+
Performs predictions on a list of text.
|
1030 |
+
|
1031 |
+
Args:
|
1032 |
+
to_predict: A python list of text (str) to be sent to the model for prediction. Note that the prefix should be prepended to the text.
|
1033 |
+
split_on_space (optional): If True, input is english string, if False, input is chinese string.
|
1034 |
+
|
1035 |
+
Returns:
|
1036 |
+
preds: A python list of the generated sequences.
|
1037 |
+
""" # noqa: ignore flake8"
|
1038 |
+
|
1039 |
+
self._move_model_to_device()
|
1040 |
+
|
1041 |
+
all_outputs = []
|
1042 |
+
# Batching
|
1043 |
+
for batch in tqdm(
|
1044 |
+
[
|
1045 |
+
to_predict[i: i + self.args.eval_batch_size]
|
1046 |
+
for i in range(0, len(to_predict), self.args.eval_batch_size)
|
1047 |
+
],
|
1048 |
+
desc="Generating outputs",
|
1049 |
+
disable=self.args.silent,
|
1050 |
+
):
|
1051 |
+
input_batch = self.tokenizer.prepare_seq2seq_batch(
|
1052 |
+
src_texts=batch,
|
1053 |
+
max_length=self.args.max_seq_length,
|
1054 |
+
padding="max_length",
|
1055 |
+
return_tensors="pt",
|
1056 |
+
truncation=True,
|
1057 |
+
)
|
1058 |
+
input_ids = input_batch["input_ids"]
|
1059 |
+
attention_mask = input_batch["attention_mask"]
|
1060 |
+
|
1061 |
+
input_ids = input_ids.to(self.device)
|
1062 |
+
attention_mask = attention_mask.to(self.device)
|
1063 |
+
|
1064 |
+
outputs = self.model.generate(
|
1065 |
+
input_ids=input_ids,
|
1066 |
+
attention_mask=attention_mask,
|
1067 |
+
num_beams=self.args.num_beams,
|
1068 |
+
max_length=self.args.max_length,
|
1069 |
+
length_penalty=self.args.length_penalty,
|
1070 |
+
early_stopping=self.args.early_stopping,
|
1071 |
+
repetition_penalty=self.args.repetition_penalty,
|
1072 |
+
do_sample=self.args.do_sample,
|
1073 |
+
top_k=self.args.top_k,
|
1074 |
+
top_p=self.args.top_p,
|
1075 |
+
num_return_sequences=self.args.num_return_sequences,
|
1076 |
+
#streamer=self.streamer,
|
1077 |
+
)
|
1078 |
+
all_outputs.extend(outputs.cpu().numpy())
|
1079 |
+
|
1080 |
+
if self.args.use_multiprocessed_decoding:
|
1081 |
+
self.model.to("cpu")
|
1082 |
+
with Pool(self.args.process_count) as p:
|
1083 |
+
if self.args.multiprocessing_chunksize == -1:
|
1084 |
+
chunksize = max(
|
1085 |
+
len(all_outputs) // (self.args.process_count * 2), 500
|
1086 |
+
)
|
1087 |
+
else:
|
1088 |
+
chunksize = self.args.multiprocessing_chunksize
|
1089 |
+
outputs = list(
|
1090 |
+
tqdm(
|
1091 |
+
p.imap(self._decode, all_outputs, chunksize=chunksize),
|
1092 |
+
total=len(all_outputs),
|
1093 |
+
desc="Decoding outputs",
|
1094 |
+
disable=self.args.silent,
|
1095 |
+
)
|
1096 |
+
)
|
1097 |
+
self._move_model_to_device()
|
1098 |
+
else:
|
1099 |
+
outputs = [
|
1100 |
+
self.tokenizer.decode(
|
1101 |
+
output_id,
|
1102 |
+
skip_special_tokens=self.args.skip_special_tokens,
|
1103 |
+
clean_up_tokenization_spaces=True,
|
1104 |
+
)
|
1105 |
+
for output_id in all_outputs
|
1106 |
+
]
|
1107 |
+
if not split_on_space:
|
1108 |
+
outputs = [''.join(gen_text.split(' ')) for gen_text in outputs]
|
1109 |
+
if self.args.num_return_sequences > 1:
|
1110 |
+
return [
|
1111 |
+
outputs[i: i + self.args.num_return_sequences]
|
1112 |
+
for i in range(0, len(outputs), self.args.num_return_sequences)
|
1113 |
+
]
|
1114 |
+
else:
|
1115 |
+
return outputs
|
1116 |
+
|
1117 |
+
def _decode(self, output_id):
|
1118 |
+
return self.tokenizer.decode(
|
1119 |
+
output_id,
|
1120 |
+
skip_special_tokens=self.args.skip_special_tokens,
|
1121 |
+
clean_up_tokenization_spaces=True,
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
def compute_metrics(self, labels, preds, **kwargs):
|
1125 |
+
"""
|
1126 |
+
Computes the evaluation metrics for the model predictions.
|
1127 |
+
|
1128 |
+
Args:
|
1129 |
+
labels: List of target sequences
|
1130 |
+
preds: List of model generated outputs
|
1131 |
+
**kwargs: Custom metrics that should be used. Pass in the metrics as keyword arguments (name of metric: function to use).
|
1132 |
+
A metric function should take in two parameters. The first parameter will be the true labels, and the second parameter will be the predictions. Both inputs
|
1133 |
+
will be lists of strings. Note that this will slow down evaluation significantly as the predicted sequences need to be generated.
|
1134 |
+
|
1135 |
+
Returns:
|
1136 |
+
result: Dictionary containing evaluation results.
|
1137 |
+
""" # noqa: ignore flake8"
|
1138 |
+
assert len(labels) == len(preds)
|
1139 |
+
|
1140 |
+
results = {}
|
1141 |
+
for metric, func in kwargs.items():
|
1142 |
+
results[metric] = func(labels, preds)
|
1143 |
+
|
1144 |
+
return results
|
1145 |
+
|
1146 |
+
def _move_model_to_device(self):
|
1147 |
+
self.model.to(self.device)
|
1148 |
+
|
1149 |
+
def _get_inputs_dict(self, batch):
|
1150 |
+
if self.args.use_hf_datasets:
|
1151 |
+
inputs = {**batch, "labels": batch["input_ids"]}
|
1152 |
+
|
1153 |
+
return {key: value.to(self.device) for key, value in inputs.items()}
|
1154 |
+
else:
|
1155 |
+
batch = tuple(t.to(self.device) for t in batch)
|
1156 |
+
|
1157 |
+
input_ids = batch[0]
|
1158 |
+
attention_mask = batch[1]
|
1159 |
+
labels = batch[2]
|
1160 |
+
labels[labels == self.tokenizer.pad_token_id] = -100
|
1161 |
+
|
1162 |
+
inputs = {
|
1163 |
+
"input_ids": input_ids,
|
1164 |
+
"attention_mask": attention_mask,
|
1165 |
+
"labels": labels,
|
1166 |
+
}
|
1167 |
+
|
1168 |
+
return inputs
|
1169 |
+
|
1170 |
+
def load_and_cache_examples(
|
1171 |
+
self, data, evaluate=False, no_cache=False, verbose=True, silent=False
|
1172 |
+
):
|
1173 |
+
"""
|
1174 |
+
Creates a T5Dataset from data.
|
1175 |
+
|
1176 |
+
Utility function for train() and eval() methods. Not intended to be used directly.
|
1177 |
+
"""
|
1178 |
+
|
1179 |
+
tokenizer = self.tokenizer
|
1180 |
+
args = self.args
|
1181 |
+
|
1182 |
+
if not no_cache:
|
1183 |
+
no_cache = args.no_cache
|
1184 |
+
|
1185 |
+
if not no_cache:
|
1186 |
+
os.makedirs(self.args.cache_dir, exist_ok=True)
|
1187 |
+
|
1188 |
+
mode = "dev" if evaluate else "train"
|
1189 |
+
|
1190 |
+
if self.args.use_hf_datasets:
|
1191 |
+
dataset = load_hf_dataset(data, tokenizer, self.args)
|
1192 |
+
return dataset
|
1193 |
+
elif args.dataset_class:
|
1194 |
+
CustomDataset = args.dataset_class
|
1195 |
+
return CustomDataset(tokenizer, args, data, mode)
|
1196 |
+
else:
|
1197 |
+
return T5Dataset(
|
1198 |
+
tokenizer,
|
1199 |
+
self.args,
|
1200 |
+
data,
|
1201 |
+
mode,
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
def _create_training_progress_scores(self, **kwargs):
|
1205 |
+
extra_metrics = {key: [] for key in kwargs}
|
1206 |
+
training_progress_scores = {
|
1207 |
+
"global_step": [],
|
1208 |
+
"eval_loss": [],
|
1209 |
+
"train_loss": [],
|
1210 |
+
**extra_metrics,
|
1211 |
+
}
|
1212 |
+
|
1213 |
+
return training_progress_scores
|
1214 |
+
|
1215 |
+
def _get_last_metrics(self, metric_values):
|
1216 |
+
return {metric: values[-1] for metric, values in metric_values.items()}
|
1217 |
+
|
1218 |
+
def save_model(
|
1219 |
+
self, output_dir=None, optimizer=None, scheduler=None, model=None, results=None
|
1220 |
+
):
|
1221 |
+
if not output_dir:
|
1222 |
+
output_dir = self.args.output_dir
|
1223 |
+
os.makedirs(output_dir, exist_ok=True)
|
1224 |
+
|
1225 |
+
if model and not self.args.no_save:
|
1226 |
+
# Take care of distributed/parallel training
|
1227 |
+
model_to_save = model.module if hasattr(model, "module") else model
|
1228 |
+
model_to_save.save_pretrained(output_dir)
|
1229 |
+
self.tokenizer.save_pretrained(output_dir)
|
1230 |
+
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
|
1231 |
+
if optimizer and scheduler and self.args.save_optimizer_and_scheduler:
|
1232 |
+
torch.save(
|
1233 |
+
optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")
|
1234 |
+
)
|
1235 |
+
torch.save(
|
1236 |
+
scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")
|
1237 |
+
)
|
1238 |
+
self.save_model_args(output_dir)
|
1239 |
+
|
1240 |
+
if results:
|
1241 |
+
output_eval_file = os.path.join(output_dir, "eval_results.txt")
|
1242 |
+
with open(output_eval_file, "w") as writer:
|
1243 |
+
for key in sorted(results.keys()):
|
1244 |
+
writer.write("{} = {}\n".format(key, str(results[key])))
|
1245 |
+
|
1246 |
+
def save_model_args(self, output_dir):
|
1247 |
+
os.makedirs(output_dir, exist_ok=True)
|
1248 |
+
self.args.save(output_dir)
|
1249 |
+
|
1250 |
+
def _load_model_args(self, input_dir):
|
1251 |
+
args = T5Args()
|
1252 |
+
args.load(input_dir)
|
1253 |
+
return args
|
1254 |
+
|
1255 |
+
def get_named_parameters(self):
|
1256 |
+
return [n for n, p in self.model.named_parameters()]
|
t5/t5_utils.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
@author:XuMing([email protected])
|
4 |
+
@description: adjust for chinese tokenizer
|
5 |
+
"""
|
6 |
+
import os
|
7 |
+
import pickle
|
8 |
+
from multiprocessing import Pool
|
9 |
+
|
10 |
+
from datasets import Dataset as HFDataset
|
11 |
+
from datasets import load_dataset
|
12 |
+
from torch.utils.data import Dataset
|
13 |
+
from tqdm.auto import tqdm
|
14 |
+
from rouge import Rouge
|
15 |
+
from loguru import logger
|
16 |
+
|
17 |
+
|
18 |
+
def preprocess_batch_for_hf_dataset(dataset, tokenizer, args):
|
19 |
+
if args.preprocess_inputs:
|
20 |
+
return tokenizer.prepare_seq2seq_batch(
|
21 |
+
src_texts=[
|
22 |
+
prefix + ": " + input_text
|
23 |
+
for prefix, input_text in zip(dataset["prefix"], dataset["input_text"])
|
24 |
+
],
|
25 |
+
tgt_texts=dataset["target_text"],
|
26 |
+
max_length=args.max_seq_length,
|
27 |
+
max_target_length=args.max_length,
|
28 |
+
padding="max_length",
|
29 |
+
return_tensors="np",
|
30 |
+
truncation=True,
|
31 |
+
)
|
32 |
+
else:
|
33 |
+
return tokenizer.prepare_seq2seq_batch(
|
34 |
+
src_texts=[
|
35 |
+
prefix + input_text
|
36 |
+
for prefix, input_text in zip(dataset["prefix"], dataset["input_text"])
|
37 |
+
],
|
38 |
+
tgt_texts=dataset["target_text"],
|
39 |
+
max_length=args.max_seq_length,
|
40 |
+
max_target_length=args.max_length,
|
41 |
+
padding="max_length",
|
42 |
+
return_tensors="np",
|
43 |
+
truncation=True,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
def load_hf_dataset(data, tokenizer, args):
|
48 |
+
if isinstance(data, str):
|
49 |
+
dataset = load_dataset(
|
50 |
+
"csv",
|
51 |
+
data_files=data,
|
52 |
+
delimiter="\t",
|
53 |
+
download_mode="force_redownload"
|
54 |
+
if args.reprocess_input_data
|
55 |
+
else "reuse_dataset_if_exists",
|
56 |
+
)
|
57 |
+
else:
|
58 |
+
dataset = HFDataset.from_pandas(data)
|
59 |
+
|
60 |
+
dataset = dataset.map(
|
61 |
+
lambda x: preprocess_batch_for_hf_dataset(x, tokenizer=tokenizer, args=args),
|
62 |
+
batched=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
dataset.set_format(type="pt", columns=["input_ids", "attention_mask"])
|
66 |
+
|
67 |
+
if isinstance(data, str):
|
68 |
+
# This is not necessarily a train dataset. The datasets library insists on calling it train.
|
69 |
+
return dataset["train"]
|
70 |
+
else:
|
71 |
+
return dataset
|
72 |
+
|
73 |
+
|
74 |
+
def preprocess_data(data):
|
75 |
+
prefix, input_text, target_text, tokenizer, args = data
|
76 |
+
|
77 |
+
# Add EOS again if truncated?
|
78 |
+
if args.preprocess_inputs:
|
79 |
+
batch = tokenizer.prepare_seq2seq_batch(
|
80 |
+
src_texts=[prefix + ": " + input_text],
|
81 |
+
tgt_texts=[target_text],
|
82 |
+
max_length=args.max_seq_length,
|
83 |
+
padding="max_length",
|
84 |
+
return_tensors="pt",
|
85 |
+
truncation=True,
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
batch = tokenizer.prepare_seq2seq_batch(
|
89 |
+
src_texts=[prefix + ": " + input_text],
|
90 |
+
tgt_texts=[target_text],
|
91 |
+
max_length=args.max_seq_length,
|
92 |
+
padding="max_length",
|
93 |
+
return_tensors="pt",
|
94 |
+
truncation=True,
|
95 |
+
)
|
96 |
+
input_ids = batch["input_ids"][0]
|
97 |
+
attention_mask = batch["attention_mask"][0]
|
98 |
+
labels = batch["labels"][0]
|
99 |
+
return (input_ids, attention_mask, labels)
|
100 |
+
|
101 |
+
|
102 |
+
class T5Dataset(Dataset):
|
103 |
+
def __init__(self, tokenizer, args, data, mode):
|
104 |
+
cached_features_file = os.path.join(
|
105 |
+
args.cache_dir,
|
106 |
+
args.model_name.replace("/", "_")
|
107 |
+
+ "_cached_"
|
108 |
+
+ str(args.max_seq_length)
|
109 |
+
+ str(len(data)),
|
110 |
+
)
|
111 |
+
|
112 |
+
if os.path.exists(cached_features_file) and (
|
113 |
+
(not args.reprocess_input_data and not args.no_cache)
|
114 |
+
or (mode == "dev" and args.use_cached_eval_features and not args.no_cache)
|
115 |
+
):
|
116 |
+
logger.info(" Loading features from cached file %s" % cached_features_file)
|
117 |
+
with open(cached_features_file, "rb") as handle:
|
118 |
+
self.examples = pickle.load(handle)
|
119 |
+
else:
|
120 |
+
logger.info(" Creating features from dataset file at %s" % args.cache_dir)
|
121 |
+
|
122 |
+
data = [
|
123 |
+
(prefix, input_text, target_text, tokenizer, args)
|
124 |
+
for prefix, input_text, target_text in zip(
|
125 |
+
data["prefix"], data["input_text"], data["target_text"]
|
126 |
+
)
|
127 |
+
]
|
128 |
+
|
129 |
+
if (mode == "train" and args.use_multiprocessing) or (
|
130 |
+
mode == "dev" and args.use_multiprocessing_for_evaluation
|
131 |
+
):
|
132 |
+
if args.multiprocessing_chunksize == -1:
|
133 |
+
chunksize = max(len(data) // (args.process_count * 2), 500)
|
134 |
+
else:
|
135 |
+
chunksize = args.multiprocessing_chunksize
|
136 |
+
|
137 |
+
with Pool(args.process_count) as p:
|
138 |
+
self.examples = list(
|
139 |
+
tqdm(
|
140 |
+
p.imap(preprocess_data, data, chunksize=chunksize),
|
141 |
+
total=len(data),
|
142 |
+
disable=args.silent,
|
143 |
+
)
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
self.examples = [preprocess_data(d) for d in tqdm(data, disable=args.silent)]
|
147 |
+
if not args.no_cache:
|
148 |
+
logger.info(" Saving features into cached file %s" % cached_features_file)
|
149 |
+
with open(cached_features_file, "wb") as handle:
|
150 |
+
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
151 |
+
|
152 |
+
def __len__(self):
|
153 |
+
return len(self.examples)
|
154 |
+
|
155 |
+
def __getitem__(self, index):
|
156 |
+
return self.examples[index]
|
157 |
+
|
158 |
+
|
159 |
+
def dynamic_lcs(X, Y):
|
160 |
+
# find the length of the strings
|
161 |
+
m = len(X)
|
162 |
+
n = len(Y)
|
163 |
+
|
164 |
+
# declaring the array for storing the dp values
|
165 |
+
L = [[None] * (n + 1) for i in range(m + 1)]
|
166 |
+
|
167 |
+
"""Following steps build L[m + 1][n + 1] in bottom up fashion
|
168 |
+
Note: L[i][j] contains length of LCS of X[0..i-1]
|
169 |
+
and Y[0..j-1]"""
|
170 |
+
for i in range(m + 1):
|
171 |
+
for j in range(n + 1):
|
172 |
+
if i == 0 or j == 0:
|
173 |
+
L[i][j] = 0
|
174 |
+
elif X[i - 1] == Y[j - 1]:
|
175 |
+
L[i][j] = L[i - 1][j - 1] + 1
|
176 |
+
else:
|
177 |
+
L[i][j] = max(L[i - 1][j], L[i][j - 1])
|
178 |
+
|
179 |
+
# L[m][n] contains the length of LCS of X[0..n-1] & Y[0..m-1]
|
180 |
+
return L[m][n]
|
181 |
+
|
182 |
+
|
183 |
+
def f1_sim(text_a, text_b):
|
184 |
+
"""F1相似度
|
185 |
+
说明:算出两个文本的最长公共子序列长度,然后乘2并处以两者
|
186 |
+
长度之和。
|
187 |
+
脚本见:https://github.com/CLUEbenchmark/pCLUE/blob/main/evaluate_pclue.py
|
188 |
+
计算pCLUE任务总分,及子分数
|
189 |
+
"""
|
190 |
+
if not text_a and not text_b:
|
191 |
+
return 0.
|
192 |
+
lcs_len = dynamic_lcs(text_a, text_b)
|
193 |
+
return 2. * lcs_len / (len(text_a) + len(text_b))
|
194 |
+
|
195 |
+
|
196 |
+
def rouge_l_zh(target, pred):
|
197 |
+
"""计算Rouge-l得分,Rouge-l指标常用于评估自动文本摘要及翻译任务
|
198 |
+
target: 真实标签
|
199 |
+
pred: 预测标签"""
|
200 |
+
|
201 |
+
if not (isinstance(target, str) or isinstance(pred, str)):
|
202 |
+
logger.error("target或pred为非字符串!请检查!")
|
203 |
+
return 0
|
204 |
+
rouge = Rouge()
|
205 |
+
scores = rouge.get_scores(" ".join(list(pred)), " ".join(list(target)))
|
206 |
+
score = scores[0]["rouge-l"]
|
207 |
+
return score["f"]
|
208 |
+
|
209 |
+
|
210 |
+
if __name__ == '__main__':
|
211 |
+
a = '123444'
|
212 |
+
b = '23411'
|
213 |
+
print(f1_sim(a, b))
|
214 |
+
print(dynamic_lcs(a, b))
|