File size: 4,052 Bytes
34a9275
 
474cb38
7b67ae6
474cb38
7b67ae6
474cb38
7b67ae6
0675490
7b67ae6
 
 
 
 
 
 
 
 
caa2389
7b67ae6
 
caa2389
7b67ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474cb38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b67ae6
474cb38
7b67ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474cb38
 
 
 
 
 
 
7b67ae6
474cb38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os

import gradio as gr
from openai import OpenAI
from huggingface_hub import InferenceClient
from tenacity import retry, wait_random_exponential, stop_after_attempt

OPENAI_KEY = os.getenv("OPENAI_KEY")
client = OpenAI(api_key=OPENAI_KEY)

def get_current_weather(location, unit="celsius"):
    """Get the current weather in a given location"""
    if "taipei" in location.lower():
        return json.dumps({"location": "Taipei", "temperature": "10", "unit": unit})
    else:
        return json.dumps({"location": location, "temperature": "unknown"})

@retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3))
def chat_completion_request(messages, tools=None, tool_choice=None):
    try:
        response = client.chat.completions.create(
            model='gpt-4o',
            messages=messages,
            tools=tools,
            tool_choice=tool_choice,
        )
        return response
    except Exception as e:
        print("Unable to generate ChatCompletion response")
        print(f"Exception: {e}")
        return e
        
tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "unit": {
                        "type": "string",
                        "enum": ["celsius", "fahrenheit"],
                        "description": "The temperature unit to use. Infer this from the users location.",
                    },
                },
                "required": ["location", "unit"],
            },
        }
    }
]


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = chat_completion_request(messages, tools=tools, tool_choice='auto')

    response_message = response.choices[0].message
    tool_calls = response_message.tool_calls
    if tool_calls:
        available_functions = {
            "get_current_weather": get_current_weather,
        } 
        messages.append(response_message)
        for tool_call in tool_calls:
            function_name = tool_call.function.name
            function_to_call = available_functions[function_name]
            function_args = json.loads(tool_call.function.arguments)
            function_response = function_to_call(
                location=function_args.get("location"),
                unit=function_args.get("unit"),
            )
            messages.append(
                {
                    "tool_call_id": tool_call.id,
                    "role": "tool",
                    "name": function_name,
                    "content": function_response,
                }
            )  
        second_response = chat_completion_request(messages)
        print(second_response)
        return second_response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()