ChenyuRabbitLove
commited on
Commit
•
7b67ae6
1
Parent(s):
67a2fe5
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,63 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
-
""
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
13 |
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
@@ -25,19 +69,34 @@ def respond(
|
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
response =
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
"""
|
43 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
@@ -45,7 +104,7 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
|
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
48 |
-
gr.Textbox(value="
|
49 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
gr.Slider(
|
|
|
1 |
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
from tenacity import retry, wait_random_exponential, stop_after_attempt
|
5 |
|
6 |
+
OPENAI_KEY = os.getenv("OPENAI_KEY")
|
7 |
+
client = OpenAI(api_key=OPEN_AI_KEY)
|
8 |
+
|
9 |
+
def get_current_weather(location, unit="celsius"):
|
10 |
+
"""Get the current weather in a given location"""
|
11 |
+
if "taipei" in location.lower():
|
12 |
+
return json.dumps({"location": "Taipei", "temperature": "10", "unit": unit})
|
13 |
+
else:
|
14 |
+
return json.dumps({"location": location, "temperature": "unknown"})
|
15 |
+
|
16 |
+
@retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3))
|
17 |
+
def chat_completion_request(messages, tools=None, tool_choice=None, model=GPT_MODEL):
|
18 |
+
try:
|
19 |
+
response = client.chat.completions.create(
|
20 |
+
model=model,
|
21 |
+
messages=messages,
|
22 |
+
tools=tools,
|
23 |
+
tool_choice=tool_choice,
|
24 |
+
)
|
25 |
+
return response
|
26 |
+
except Exception as e:
|
27 |
+
print("Unable to generate ChatCompletion response")
|
28 |
+
print(f"Exception: {e}")
|
29 |
+
return e
|
30 |
+
|
31 |
+
tools = [
|
32 |
+
{
|
33 |
+
"type": "function",
|
34 |
+
"function": {
|
35 |
+
"name": "get_current_weather",
|
36 |
+
"description": "Get the current weather",
|
37 |
+
"parameters": {
|
38 |
+
"type": "object",
|
39 |
+
"properties": {
|
40 |
+
"location": {
|
41 |
+
"type": "string",
|
42 |
+
"description": "The city and state, e.g. San Francisco, CA",
|
43 |
+
},
|
44 |
+
"unit": {
|
45 |
+
"type": "string",
|
46 |
+
"enum": ["celsius", "fahrenheit"],
|
47 |
+
"description": "The temperature unit to use. Infer this from the users location.",
|
48 |
+
},
|
49 |
+
},
|
50 |
+
"required": ["location", "unit"],
|
51 |
+
},
|
52 |
+
}
|
53 |
+
}
|
54 |
+
]
|
55 |
|
56 |
|
57 |
def respond(
|
58 |
message,
|
59 |
history: list[tuple[str, str]],
|
60 |
system_message,
|
|
|
|
|
|
|
61 |
):
|
62 |
messages = [{"role": "system", "content": system_message}]
|
63 |
|
|
|
69 |
|
70 |
messages.append({"role": "user", "content": message})
|
71 |
|
72 |
+
response = chat_completion_request(messages, tools=tools, tool_choice='auto')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
response_message = response.choices[0].message
|
75 |
+
tool_calls = response_message.tool_calls
|
76 |
+
if tool_calls:
|
77 |
+
available_functions = {
|
78 |
+
"get_current_weather": get_current_weather,
|
79 |
+
}
|
80 |
+
messages.append(response_message)
|
81 |
+
for tool_call in tool_calls:
|
82 |
+
function_name = tool_call.function.name
|
83 |
+
function_to_call = available_functions[function_name]
|
84 |
+
function_args = json.loads(tool_call.function.arguments)
|
85 |
+
function_response = function_to_call(
|
86 |
+
location=function_args.get("location"),
|
87 |
+
unit=function_args.get("unit"),
|
88 |
+
)
|
89 |
+
messages.append(
|
90 |
+
{
|
91 |
+
"tool_call_id": tool_call.id,
|
92 |
+
"role": "tool",
|
93 |
+
"name": function_name,
|
94 |
+
"content": function_response,
|
95 |
+
}
|
96 |
+
)
|
97 |
+
second_response = chat_completion_request(messages)
|
98 |
+
print(second_response)
|
99 |
+
return second_response
|
100 |
|
101 |
"""
|
102 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
104 |
demo = gr.ChatInterface(
|
105 |
respond,
|
106 |
additional_inputs=[
|
107 |
+
gr.Textbox(value="", label="System message"),
|
108 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
109 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
110 |
gr.Slider(
|