Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", device_map="auto", torch_dtype="auto") | |
# Create the pipeline | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto", use_fast=False) | |
# Define the chat function | |
def chat(question): | |
messages = [{"role": "user", "content": question}] | |
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
outputs = pipe(prompt)[0] | |
return outputs["generated_text"] | |
# Set up the Gradio interface | |
iface = gr.Interface( | |
fn=chat, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Type your question here..."), | |
outputs="text", | |
title="Hungarian Chatbot", | |
description="Ask questions in Hungarian and get answers from the SambaLingo-Hungarian-Chat model." | |
) | |
# Launch the interface | |
iface.launch() | |