Spaces:
Sleeping
Sleeping
File size: 1,099 Bytes
d571458 2f8305c d571458 2f8305c 92c7a33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", device_map="auto", torch_dtype="auto")
# Create the pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto", use_fast=False)
# Define the chat function
def chat(question):
messages = [{"role": "user", "content": question}]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt)[0]
return outputs["generated_text"]
# Set up the Gradio interface
iface = gr.Interface(
fn=chat,
inputs=gr.inputs.Textbox(lines=2, placeholder="Type your question here..."),
outputs="text",
title="Hungarian Chatbot",
description="Ask questions in Hungarian and get answers from the SambaLingo-Hungarian-Chat model."
)
# Launch the interface
iface.launch()
|