Chegue100 commited on
Commit
2f8305c
1 Parent(s): 956ba76

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -60
app.py CHANGED
@@ -1,63 +1,28 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Load the model and tokenizer
5
+ tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", use_fast=False)
6
+ model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", device_map="auto", torch_dtype="auto")
7
+
8
+ # Create the pipeline
9
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto", use_fast=False)
10
+
11
+ # Define the chat function
12
+ def chat(question):
13
+ messages = [{"role": "user", "content": question}]
14
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
15
+ outputs = pipe(prompt)[0]
16
+ return outputs["generated_text"]
17
+
18
+ # Set up the Gradio interface
19
+ iface = gr.Interface(
20
+ fn=chat,
21
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Type your question here..."),
22
+ outputs="text",
23
+ title="Hungarian Chatbot",
24
+ description="Ask questions in Hungarian and get answers from the SambaLingo-Hungarian-Chat model."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  )
26
 
27
+ # Launch the interface
28
+ iface.launch()