Binaryy's picture
Create app.py
e700a38
raw
history blame
2.45 kB
import gradio as gr
import pinecone
from sentence_transformers import SentenceTransformer
import torch
from splade.models.transformer_rep import Splade
from transformers import AutoTokenizer
from datasets import load_dataset
pinecone.init(
api_key='884344f6-d820-4bc8-9edf-4157373df452',
environment='gcp-starter'
)
index = pinecone.Index('pubmed-splade')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# check device being run on
if device != 'cuda':
print("==========\n"+
"WARNING: You are not running on GPU so this may be slow.\n"+
"\n==========")
dense_model = SentenceTransformer(
'msmarco-bert-base-dot-v5',
device=device
)
sparse_model_id = 'naver/splade-cocondenser-ensembledistil'
sparse_model = Splade(sparse_model_id, agg='max')
sparse_model.to(device) # move to GPU if possible
sparse_model.eval()
tokenizer = AutoTokenizer.from_pretrained(sparse_model_id)
data = load_dataset('Binaryy/cream_listings', split='train')
df = data.to_pandas()
def encode(text: str):
# create dense vec
dense_vec = dense_model.encode(text).tolist()
# create sparse vec
input_ids = tokenizer(text, return_tensors='pt')
with torch.no_grad():
sparse_vec = sparse_model(
d_kwargs=input_ids.to(device)
)['d_rep'].squeeze()
# convert to dictionary format
indices = sparse_vec.nonzero().squeeze().cpu().tolist()
values = sparse_vec[indices].cpu().tolist()
sparse_dict = {"indices": indices, "values": values}
# return vecs
return dense_vec, sparse_dict
def search(query):
dense, sparse = encode(query)
# query
xc = index.query(
vector=dense,
sparse_vector=sparse,
top_k=5, # how many results to return
include_metadata=True
)
match_ids = [match['id'].split('-')[0] for match in xc['matches']]
# Query the existing DataFrame based on 'id'
filtered_df = df[df['_id'].isin(match_ids)]
attributes_to_extract = ['_id', 'postedBy.accountName', 'images', 'title', 'location', 'price']
extracted_data = filtered_df[attributes_to_extract]
result_json = extracted_data.to_json(orient='records')
return result_json
# Create a Gradio interface
iface = gr.Interface(
fn=search,
inputs="text",
outputs="json",
title="Semantic Search Prototype",
description="Enter your query to perform a semantic search.",
)
# Launch the Gradio interface
iface.launch(share=True)