Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pinecone
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import torch
|
5 |
+
from splade.models.transformer_rep import Splade
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from datasets import load_dataset
|
8 |
+
|
9 |
+
pinecone.init(
|
10 |
+
api_key='884344f6-d820-4bc8-9edf-4157373df452',
|
11 |
+
environment='gcp-starter'
|
12 |
+
)
|
13 |
+
index = pinecone.Index('pubmed-splade')
|
14 |
+
|
15 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
16 |
+
# check device being run on
|
17 |
+
if device != 'cuda':
|
18 |
+
print("==========\n"+
|
19 |
+
"WARNING: You are not running on GPU so this may be slow.\n"+
|
20 |
+
"\n==========")
|
21 |
+
|
22 |
+
dense_model = SentenceTransformer(
|
23 |
+
'msmarco-bert-base-dot-v5',
|
24 |
+
device=device
|
25 |
+
)
|
26 |
+
|
27 |
+
sparse_model_id = 'naver/splade-cocondenser-ensembledistil'
|
28 |
+
sparse_model = Splade(sparse_model_id, agg='max')
|
29 |
+
sparse_model.to(device) # move to GPU if possible
|
30 |
+
sparse_model.eval()
|
31 |
+
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(sparse_model_id)
|
33 |
+
data = load_dataset('Binaryy/cream_listings', split='train')
|
34 |
+
df = data.to_pandas()
|
35 |
+
|
36 |
+
def encode(text: str):
|
37 |
+
# create dense vec
|
38 |
+
dense_vec = dense_model.encode(text).tolist()
|
39 |
+
# create sparse vec
|
40 |
+
input_ids = tokenizer(text, return_tensors='pt')
|
41 |
+
with torch.no_grad():
|
42 |
+
sparse_vec = sparse_model(
|
43 |
+
d_kwargs=input_ids.to(device)
|
44 |
+
)['d_rep'].squeeze()
|
45 |
+
# convert to dictionary format
|
46 |
+
indices = sparse_vec.nonzero().squeeze().cpu().tolist()
|
47 |
+
values = sparse_vec[indices].cpu().tolist()
|
48 |
+
sparse_dict = {"indices": indices, "values": values}
|
49 |
+
# return vecs
|
50 |
+
return dense_vec, sparse_dict
|
51 |
+
|
52 |
+
def search(query):
|
53 |
+
dense, sparse = encode(query)
|
54 |
+
# query
|
55 |
+
xc = index.query(
|
56 |
+
vector=dense,
|
57 |
+
sparse_vector=sparse,
|
58 |
+
top_k=5, # how many results to return
|
59 |
+
include_metadata=True
|
60 |
+
)
|
61 |
+
match_ids = [match['id'].split('-')[0] for match in xc['matches']]
|
62 |
+
# Query the existing DataFrame based on 'id'
|
63 |
+
filtered_df = df[df['_id'].isin(match_ids)]
|
64 |
+
attributes_to_extract = ['_id', 'postedBy.accountName', 'images', 'title', 'location', 'price']
|
65 |
+
extracted_data = filtered_df[attributes_to_extract]
|
66 |
+
result_json = extracted_data.to_json(orient='records')
|
67 |
+
return result_json
|
68 |
+
|
69 |
+
# Create a Gradio interface
|
70 |
+
iface = gr.Interface(
|
71 |
+
fn=search,
|
72 |
+
inputs="text",
|
73 |
+
outputs="json",
|
74 |
+
title="Semantic Search Prototype",
|
75 |
+
description="Enter your query to perform a semantic search.",
|
76 |
+
)
|
77 |
+
|
78 |
+
# Launch the Gradio interface
|
79 |
+
iface.launch(share=True)
|