|
import whisper |
|
import streamlit as st |
|
from streamlit_lottie import st_lottie |
|
from utils import write_vtt, write_srt |
|
import ffmpeg |
|
import requests |
|
from typing import Iterator |
|
from io import StringIO |
|
import numpy as np |
|
import pathlib |
|
import os |
|
|
|
st.set_page_config(page_title="Auto Transcriber", page_icon="π", layout="wide") |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_lottieurl(url: str): |
|
r = requests.get(url) |
|
if r.status_code != 200: |
|
return None |
|
return r.json() |
|
|
|
|
|
APP_DIR = pathlib.Path(__file__).parent.absolute() |
|
|
|
LOCAL_DIR = APP_DIR / "local_audio" |
|
LOCAL_DIR.mkdir(exist_ok=True) |
|
save_dir = LOCAL_DIR / "output" |
|
save_dir.mkdir(exist_ok=True) |
|
|
|
|
|
col1, col2 = st.columns([1, 3]) |
|
with col1: |
|
lottie = load_lottieurl("https://assets1.lottiefiles.com/packages/lf20_1xbk4d2v.json") |
|
st_lottie(lottie) |
|
|
|
with col2: |
|
st.write(""" |
|
## Auto Transcriber |
|
##### Input an audio file and get a transcript. |
|
###### β If you want to transcribe the audio in its original language, select the task as "Transcribe" |
|
###### β If you want to translate the transcription to English, select the task as "Translate" |
|
###### I recommend starting with the base model and then experimenting with the larger models, the small and medium models often work well. """) |
|
|
|
loaded_model = whisper.load_model("base") |
|
current_size = "None" |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def change_model(current_size, size): |
|
if current_size != size: |
|
loaded_model = whisper.load_model(size) |
|
return loaded_model |
|
else: |
|
raise Exception("Model size is the same as the current size.") |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def inferecence(loaded_model, uploaded_file, task): |
|
with open(f"{save_dir}/input.mp3", "wb") as f: |
|
f.write(uploaded_file.read()) |
|
audio = ffmpeg.input(f"{save_dir}/input.mp3") |
|
audio = ffmpeg.output(audio, f"{save_dir}/output.wav", acodec="pcm_s16le", ac=1, ar="16k") |
|
ffmpeg.run(audio, overwrite_output=True) |
|
if task == "Transcribe": |
|
options = dict(task="transcribe", best_of=5) |
|
results = loaded_model.transcribe(f"{save_dir}/output.wav", **options) |
|
vtt = getSubs(results["segments"], "vtt", 80) |
|
srt = getSubs(results["segments"], "srt", 80) |
|
lang = results["language"] |
|
return results["text"], vtt, srt, lang |
|
elif task == "Translate": |
|
options = dict(task="translate", best_of=5) |
|
results = loaded_model.transcribe(f"{save_dir}/output.wav", **options) |
|
vtt = getSubs(results["segments"], "vtt", 80) |
|
srt = getSubs(results["segments"], "srt", 80) |
|
lang = results["language"] |
|
return results["text"], vtt, srt, lang |
|
else: |
|
raise ValueError("Task not supported") |
|
|
|
|
|
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str: |
|
segmentStream = StringIO() |
|
|
|
if format == 'vtt': |
|
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth) |
|
elif format == 'srt': |
|
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth) |
|
else: |
|
raise Exception("Unknown format " + format) |
|
|
|
segmentStream.seek(0) |
|
return segmentStream.read() |
|
|
|
|
|
def main(): |
|
size = st.selectbox("Select Model Size (The larger the model, the more accurate the transcription will be, but it will take longer)", ["tiny", "base", "small", "medium", "large"], index=1) |
|
loaded_model = change_model(current_size, size) |
|
st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} " |
|
f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.") |
|
input_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a"]) |
|
if input_file is not None: |
|
filename = input_file.name[:-4] |
|
else: |
|
filename = None |
|
task = st.selectbox("Select Task", ["Transcribe", "Translate"], index=0) |
|
if task == "Transcribe": |
|
if st.button("Transcribe"): |
|
results = inferecence(loaded_model, input_file, task) |
|
col3, col4 = st.columns(2) |
|
col5, col6, col7 = st.columns(3) |
|
col9, col10 = st.columns(2) |
|
|
|
with col3: |
|
st.audio(input_file) |
|
|
|
with open("transcript.txt", "w+", encoding='utf8') as f: |
|
f.writelines(results[0]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f: |
|
datatxt = f.read() |
|
|
|
|
|
with open("transcript.vtt", "w+",encoding='utf8') as f: |
|
f.writelines(results[1]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f: |
|
datavtt = f.read() |
|
|
|
with open("transcript.srt", "w+",encoding='utf8') as f: |
|
f.writelines(results[2]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f: |
|
datasrt = f.read() |
|
|
|
with col5: |
|
st.download_button(label="Download Transcript (.txt)", |
|
data=datatxt, |
|
file_name="transcript.txt") |
|
with col6: |
|
st.download_button(label="Download Transcript (.vtt)", |
|
data=datavtt, |
|
file_name="transcript.vtt") |
|
with col7: |
|
st.download_button(label="Download Transcript (.srt)", |
|
data=datasrt, |
|
file_name="transcript.srt") |
|
with col9: |
|
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.") |
|
with col10: |
|
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.") |
|
|
|
elif task == "Translate": |
|
if st.button("Translate to English"): |
|
results = inferecence(loaded_model, input_file, task) |
|
col3, col4 = st.columns(2) |
|
col5, col6, col7 = st.columns(3) |
|
col9, col10 = st.columns(2) |
|
|
|
with col3: |
|
st.audio(input_file) |
|
|
|
with open("transcript.txt", "w+", encoding='utf8') as f: |
|
f.writelines(results[0]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f: |
|
datatxt = f.read() |
|
|
|
|
|
with open("transcript.vtt", "w+",encoding='utf8') as f: |
|
f.writelines(results[1]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f: |
|
datavtt = f.read() |
|
|
|
with open("transcript.srt", "w+",encoding='utf8') as f: |
|
f.writelines(results[2]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f: |
|
datasrt = f.read() |
|
|
|
with col5: |
|
st.download_button(label="Download Transcript (.txt)", |
|
data=datatxt, |
|
file_name="transcript.txt") |
|
with col6: |
|
st.download_button(label="Download Transcript (.vtt)", |
|
data=datavtt, |
|
file_name="transcript.vtt") |
|
with col7: |
|
st.download_button(label="Download Transcript (.srt)", |
|
data=datasrt, |
|
file_name="transcript.srt") |
|
with col9: |
|
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.") |
|
with col10: |
|
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.") |
|
|
|
else: |
|
st.error("Please select a task.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
st.markdown("###### Made with :heart: by [@BatuhanYΔ±lmaz](https://github.com/BatuhanYilmaz26) [![this is an image link](https://i.imgur.com/thJhzOO.png)](https://www.buymeacoffee.com/batuhanylmz)") |