File size: 8,587 Bytes
5ca0a1c
 
 
 
 
613b97e
 
 
 
 
 
5ca0a1c
613b97e
5ca0a1c
 
 
 
 
 
 
 
 
613b97e
 
 
 
 
 
 
 
 
5ca0a1c
 
613b97e
8335d37
5ca0a1c
 
 
613b97e
 
 
 
5ca0a1c
 
 
 
 
 
6ecadee
5ca0a1c
 
9aaeafd
5ca0a1c
 
 
 
badf5f8
613b97e
 
 
 
 
 
5ca0a1c
 
613b97e
5ca0a1c
 
 
 
 
 
613b97e
5ca0a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aaeafd
613b97e
 
 
 
5ca0a1c
 
 
613b97e
5ca0a1c
613b97e
5ca0a1c
613b97e
5ca0a1c
613b97e
5ca0a1c
 
 
 
 
 
 
 
613b97e
 
 
 
 
5ca0a1c
613b97e
 
 
 
 
 
5ca0a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613b97e
5ca0a1c
 
613b97e
5ca0a1c
613b97e
5ca0a1c
613b97e
5ca0a1c
613b97e
5ca0a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613b97e
5ca0a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613b97e
5ca0a1c
 
 
 
 
9aaeafd
18c99f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import whisper
import streamlit as st
from streamlit_lottie import st_lottie
from utils import write_vtt, write_srt
import ffmpeg
import requests
from typing import Iterator
from io import StringIO
import numpy as np
import pathlib
import os

st.set_page_config(page_title="Auto Transcriber", page_icon="🔊", layout="wide")

# Define a function that we can use to load lottie files from a link.
@st.cache(allow_output_mutation=True)
def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()


APP_DIR = pathlib.Path(__file__).parent.absolute()

LOCAL_DIR = APP_DIR / "local_audio"
LOCAL_DIR.mkdir(exist_ok=True)
save_dir = LOCAL_DIR / "output"
save_dir.mkdir(exist_ok=True)


col1, col2 = st.columns([1, 3])
with col1:
    lottie = load_lottieurl("https://assets1.lottiefiles.com/packages/lf20_1xbk4d2v.json")
    st_lottie(lottie)

with col2:
    st.write("""
    ## Auto Transcriber
    ##### Input an audio file and get a transcript.
    ###### ➠ If you want to transcribe the audio in its original language, select the task as "Transcribe"
    ###### ➠ If you want to translate the transcription to English, select the task as "Translate" 
    ###### I recommend starting with the base model and then experimenting with the larger models, the small and medium models often work well. """)

loaded_model = whisper.load_model("base")
current_size = "None"


@st.cache(allow_output_mutation=True)
def change_model(current_size, size):
    if current_size != size:
        loaded_model = whisper.load_model(size)
        return loaded_model
    else:
        raise Exception("Model size is the same as the current size.")

@st.cache(allow_output_mutation=True)
def inferecence(loaded_model, uploaded_file, task):
    with open(f"{save_dir}/input.mp3", "wb") as f:
            f.write(uploaded_file.read())
    audio = ffmpeg.input(f"{save_dir}/input.mp3")
    audio = ffmpeg.output(audio, f"{save_dir}/output.wav", acodec="pcm_s16le", ac=1, ar="16k")
    ffmpeg.run(audio, overwrite_output=True)
    if task == "Transcribe":
        options = dict(task="transcribe", best_of=5)
        results = loaded_model.transcribe(f"{save_dir}/output.wav", **options)
        vtt = getSubs(results["segments"], "vtt", 80)
        srt = getSubs(results["segments"], "srt", 80)
        lang = results["language"]
        return results["text"], vtt, srt, lang
    elif task == "Translate":
        options = dict(task="translate", best_of=5)
        results = loaded_model.transcribe(f"{save_dir}/output.wav", **options)
        vtt = getSubs(results["segments"], "vtt", 80)
        srt = getSubs(results["segments"], "srt", 80)
        lang = results["language"]
        return results["text"], vtt, srt, lang
    else:
        raise ValueError("Task not supported")


def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
    segmentStream = StringIO()

    if format == 'vtt':
        write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
    elif format == 'srt':
        write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
    else:
        raise Exception("Unknown format " + format)

    segmentStream.seek(0)
    return segmentStream.read()


def main():
    size = st.selectbox("Select Model Size (The larger the model, the more accurate the transcription will be, but it will take longer)", ["tiny", "base", "small", "medium", "large"], index=1)
    loaded_model = change_model(current_size, size)
    st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} "
        f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.")
    input_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a"])
    if input_file is not None:
        filename = input_file.name[:-4]
    else:
        filename = None
    task = st.selectbox("Select Task", ["Transcribe", "Translate"], index=0)
    if task == "Transcribe":
        if st.button("Transcribe"):
            results = inferecence(loaded_model, input_file, task)
            col3, col4 = st.columns(2)
            col5, col6, col7 = st.columns(3)
            col9, col10 = st.columns(2)
            
            with col3:
                st.audio(input_file)
                
            with open("transcript.txt", "w+", encoding='utf8') as f:
                f.writelines(results[0])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
                datatxt = f.read()
                

            with open("transcript.vtt", "w+",encoding='utf8') as f:
                f.writelines(results[1])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
                datavtt = f.read()
                
            with open("transcript.srt", "w+",encoding='utf8') as f:
                f.writelines(results[2])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
                datasrt = f.read()

            with col5:
                st.download_button(label="Download Transcript (.txt)",
                                data=datatxt,
                                file_name="transcript.txt")
            with col6:   
                st.download_button(label="Download Transcript (.vtt)",
                                    data=datavtt,
                                    file_name="transcript.vtt")
            with col7:
                st.download_button(label="Download Transcript (.srt)",
                                    data=datasrt,
                                    file_name="transcript.srt")
            with col9:
                st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
            with col10:
                st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")

    elif task == "Translate":
        if st.button("Translate to English"):
            results = inferecence(loaded_model, input_file, task)
            col3, col4 = st.columns(2)
            col5, col6, col7 = st.columns(3)
            col9, col10 = st.columns(2)

            with col3:
                st.audio(input_file)
                
            with open("transcript.txt", "w+", encoding='utf8') as f:
                f.writelines(results[0])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
                datatxt = f.read()
                

            with open("transcript.vtt", "w+",encoding='utf8') as f:
                f.writelines(results[1])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
                datavtt = f.read()
                
            with open("transcript.srt", "w+",encoding='utf8') as f:
                f.writelines(results[2])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
                datasrt = f.read()
                
            with col5:
                st.download_button(label="Download Transcript (.txt)",
                                data=datatxt,
                                file_name="transcript.txt")
            with col6:   
                st.download_button(label="Download Transcript (.vtt)",
                                    data=datavtt,
                                    file_name="transcript.vtt")
            with col7:
                st.download_button(label="Download Transcript (.srt)",
                                    data=datasrt,
                                    file_name="transcript.srt")
            with col9:
                st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
            with col10:
                st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")

    else:
        st.error("Please select a task.")


if __name__ == "__main__":
    main()
    st.markdown("###### Made with :heart: by [@BatuhanYılmaz](https://github.com/BatuhanYilmaz26) [![this is an image link](https://i.imgur.com/thJhzOO.png)](https://www.buymeacoffee.com/batuhanylmz)")