Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from torch.autograd import Function | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext( | |
'_ext', ['roi_align_rotated_forward', 'roi_align_rotated_backward']) | |
class RoIAlignRotatedFunction(Function): | |
def symbolic(g, features, rois, out_size, spatial_scale, sample_num, | |
aligned, clockwise): | |
if isinstance(out_size, int): | |
out_h = out_size | |
out_w = out_size | |
elif isinstance(out_size, tuple): | |
assert len(out_size) == 2 | |
assert isinstance(out_size[0], int) | |
assert isinstance(out_size[1], int) | |
out_h, out_w = out_size | |
else: | |
raise TypeError( | |
'"out_size" must be an integer or tuple of integers') | |
return g.op( | |
'mmcv::MMCVRoIAlignRotated', | |
features, | |
rois, | |
output_height_i=out_h, | |
output_width_i=out_h, | |
spatial_scale_f=spatial_scale, | |
sampling_ratio_i=sample_num, | |
aligned_i=aligned, | |
clockwise_i=clockwise) | |
def forward(ctx, | |
features, | |
rois, | |
out_size, | |
spatial_scale, | |
sample_num=0, | |
aligned=True, | |
clockwise=False): | |
if isinstance(out_size, int): | |
out_h = out_size | |
out_w = out_size | |
elif isinstance(out_size, tuple): | |
assert len(out_size) == 2 | |
assert isinstance(out_size[0], int) | |
assert isinstance(out_size[1], int) | |
out_h, out_w = out_size | |
else: | |
raise TypeError( | |
'"out_size" must be an integer or tuple of integers') | |
ctx.spatial_scale = spatial_scale | |
ctx.sample_num = sample_num | |
ctx.aligned = aligned | |
ctx.clockwise = clockwise | |
ctx.save_for_backward(rois) | |
ctx.feature_size = features.size() | |
batch_size, num_channels, data_height, data_width = features.size() | |
num_rois = rois.size(0) | |
output = features.new_zeros(num_rois, num_channels, out_h, out_w) | |
ext_module.roi_align_rotated_forward( | |
features, | |
rois, | |
output, | |
pooled_height=out_h, | |
pooled_width=out_w, | |
spatial_scale=spatial_scale, | |
sample_num=sample_num, | |
aligned=aligned, | |
clockwise=clockwise) | |
return output | |
def backward(ctx, grad_output): | |
feature_size = ctx.feature_size | |
spatial_scale = ctx.spatial_scale | |
aligned = ctx.aligned | |
clockwise = ctx.clockwise | |
sample_num = ctx.sample_num | |
rois = ctx.saved_tensors[0] | |
assert feature_size is not None | |
batch_size, num_channels, data_height, data_width = feature_size | |
out_w = grad_output.size(3) | |
out_h = grad_output.size(2) | |
grad_input = grad_rois = None | |
if ctx.needs_input_grad[0]: | |
grad_input = rois.new_zeros(batch_size, num_channels, data_height, | |
data_width) | |
ext_module.roi_align_rotated_backward( | |
grad_output.contiguous(), | |
rois, | |
grad_input, | |
pooled_height=out_h, | |
pooled_width=out_w, | |
spatial_scale=spatial_scale, | |
sample_num=sample_num, | |
aligned=aligned, | |
clockwise=clockwise) | |
return grad_input, grad_rois, None, None, None, None, None | |
roi_align_rotated = RoIAlignRotatedFunction.apply | |
class RoIAlignRotated(nn.Module): | |
"""RoI align pooling layer for rotated proposals. | |
It accepts a feature map of shape (N, C, H, W) and rois with shape | |
(n, 6) with each roi decoded as (batch_index, center_x, center_y, | |
w, h, angle). The angle is in radian. | |
Args: | |
out_size (tuple): h, w | |
spatial_scale (float): scale the input boxes by this number | |
sample_num (int): number of inputs samples to take for each | |
output sample. 0 to take samples densely for current models. | |
aligned (bool): if False, use the legacy implementation in | |
MMDetection. If True, align the results more perfectly. | |
Default: True. | |
clockwise (bool): If True, the angle in each proposal follows a | |
clockwise fashion in image space, otherwise, the angle is | |
counterclockwise. Default: False. | |
Note: | |
The implementation of RoIAlign when aligned=True is modified from | |
https://github.com/facebookresearch/detectron2/ | |
The meaning of aligned=True: | |
Given a continuous coordinate c, its two neighboring pixel | |
indices (in our pixel model) are computed by floor(c - 0.5) and | |
ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete | |
indices [0] and [1] (which are sampled from the underlying signal | |
at continuous coordinates 0.5 and 1.5). But the original roi_align | |
(aligned=False) does not subtract the 0.5 when computing | |
neighboring pixel indices and therefore it uses pixels with a | |
slightly incorrect alignment (relative to our pixel model) when | |
performing bilinear interpolation. | |
With `aligned=True`, | |
we first appropriately scale the ROI and then shift it by -0.5 | |
prior to calling roi_align. This produces the correct neighbors; | |
The difference does not make a difference to the model's | |
performance if ROIAlign is used together with conv layers. | |
""" | |
def __init__(self, | |
out_size, | |
spatial_scale, | |
sample_num=0, | |
aligned=True, | |
clockwise=False): | |
super(RoIAlignRotated, self).__init__() | |
self.out_size = out_size | |
self.spatial_scale = float(spatial_scale) | |
self.sample_num = int(sample_num) | |
self.aligned = aligned | |
self.clockwise = clockwise | |
def forward(self, features, rois): | |
return RoIAlignRotatedFunction.apply(features, rois, self.out_size, | |
self.spatial_scale, | |
self.sample_num, self.aligned, | |
self.clockwise) | |