Spaces:
Runtime error
Runtime error
File size: 6,434 Bytes
58f667f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from torch.autograd import Function
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
'_ext', ['roi_align_rotated_forward', 'roi_align_rotated_backward'])
class RoIAlignRotatedFunction(Function):
@staticmethod
def symbolic(g, features, rois, out_size, spatial_scale, sample_num,
aligned, clockwise):
if isinstance(out_size, int):
out_h = out_size
out_w = out_size
elif isinstance(out_size, tuple):
assert len(out_size) == 2
assert isinstance(out_size[0], int)
assert isinstance(out_size[1], int)
out_h, out_w = out_size
else:
raise TypeError(
'"out_size" must be an integer or tuple of integers')
return g.op(
'mmcv::MMCVRoIAlignRotated',
features,
rois,
output_height_i=out_h,
output_width_i=out_h,
spatial_scale_f=spatial_scale,
sampling_ratio_i=sample_num,
aligned_i=aligned,
clockwise_i=clockwise)
@staticmethod
def forward(ctx,
features,
rois,
out_size,
spatial_scale,
sample_num=0,
aligned=True,
clockwise=False):
if isinstance(out_size, int):
out_h = out_size
out_w = out_size
elif isinstance(out_size, tuple):
assert len(out_size) == 2
assert isinstance(out_size[0], int)
assert isinstance(out_size[1], int)
out_h, out_w = out_size
else:
raise TypeError(
'"out_size" must be an integer or tuple of integers')
ctx.spatial_scale = spatial_scale
ctx.sample_num = sample_num
ctx.aligned = aligned
ctx.clockwise = clockwise
ctx.save_for_backward(rois)
ctx.feature_size = features.size()
batch_size, num_channels, data_height, data_width = features.size()
num_rois = rois.size(0)
output = features.new_zeros(num_rois, num_channels, out_h, out_w)
ext_module.roi_align_rotated_forward(
features,
rois,
output,
pooled_height=out_h,
pooled_width=out_w,
spatial_scale=spatial_scale,
sample_num=sample_num,
aligned=aligned,
clockwise=clockwise)
return output
@staticmethod
def backward(ctx, grad_output):
feature_size = ctx.feature_size
spatial_scale = ctx.spatial_scale
aligned = ctx.aligned
clockwise = ctx.clockwise
sample_num = ctx.sample_num
rois = ctx.saved_tensors[0]
assert feature_size is not None
batch_size, num_channels, data_height, data_width = feature_size
out_w = grad_output.size(3)
out_h = grad_output.size(2)
grad_input = grad_rois = None
if ctx.needs_input_grad[0]:
grad_input = rois.new_zeros(batch_size, num_channels, data_height,
data_width)
ext_module.roi_align_rotated_backward(
grad_output.contiguous(),
rois,
grad_input,
pooled_height=out_h,
pooled_width=out_w,
spatial_scale=spatial_scale,
sample_num=sample_num,
aligned=aligned,
clockwise=clockwise)
return grad_input, grad_rois, None, None, None, None, None
roi_align_rotated = RoIAlignRotatedFunction.apply
class RoIAlignRotated(nn.Module):
"""RoI align pooling layer for rotated proposals.
It accepts a feature map of shape (N, C, H, W) and rois with shape
(n, 6) with each roi decoded as (batch_index, center_x, center_y,
w, h, angle). The angle is in radian.
Args:
out_size (tuple): h, w
spatial_scale (float): scale the input boxes by this number
sample_num (int): number of inputs samples to take for each
output sample. 0 to take samples densely for current models.
aligned (bool): if False, use the legacy implementation in
MMDetection. If True, align the results more perfectly.
Default: True.
clockwise (bool): If True, the angle in each proposal follows a
clockwise fashion in image space, otherwise, the angle is
counterclockwise. Default: False.
Note:
The implementation of RoIAlign when aligned=True is modified from
https://github.com/facebookresearch/detectron2/
The meaning of aligned=True:
Given a continuous coordinate c, its two neighboring pixel
indices (in our pixel model) are computed by floor(c - 0.5) and
ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
indices [0] and [1] (which are sampled from the underlying signal
at continuous coordinates 0.5 and 1.5). But the original roi_align
(aligned=False) does not subtract the 0.5 when computing
neighboring pixel indices and therefore it uses pixels with a
slightly incorrect alignment (relative to our pixel model) when
performing bilinear interpolation.
With `aligned=True`,
we first appropriately scale the ROI and then shift it by -0.5
prior to calling roi_align. This produces the correct neighbors;
The difference does not make a difference to the model's
performance if ROIAlign is used together with conv layers.
"""
def __init__(self,
out_size,
spatial_scale,
sample_num=0,
aligned=True,
clockwise=False):
super(RoIAlignRotated, self).__init__()
self.out_size = out_size
self.spatial_scale = float(spatial_scale)
self.sample_num = int(sample_num)
self.aligned = aligned
self.clockwise = clockwise
def forward(self, features, rois):
return RoIAlignRotatedFunction.apply(features, rois, self.out_size,
self.spatial_scale,
self.sample_num, self.aligned,
self.clockwise)
|