Spaces:
Runtime error
Runtime error
# Modified from flops-counter.pytorch by Vladislav Sovrasov | |
# original repo: https://github.com/sovrasov/flops-counter.pytorch | |
# MIT License | |
# Copyright (c) 2018 Vladislav Sovrasov | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import sys | |
from functools import partial | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import annotator.uniformer.mmcv as mmcv | |
def get_model_complexity_info(model, | |
input_shape, | |
print_per_layer_stat=True, | |
as_strings=True, | |
input_constructor=None, | |
flush=False, | |
ost=sys.stdout): | |
"""Get complexity information of a model. | |
This method can calculate FLOPs and parameter counts of a model with | |
corresponding input shape. It can also print complexity information for | |
each layer in a model. | |
Supported layers are listed as below: | |
- Convolutions: ``nn.Conv1d``, ``nn.Conv2d``, ``nn.Conv3d``. | |
- Activations: ``nn.ReLU``, ``nn.PReLU``, ``nn.ELU``, ``nn.LeakyReLU``, | |
``nn.ReLU6``. | |
- Poolings: ``nn.MaxPool1d``, ``nn.MaxPool2d``, ``nn.MaxPool3d``, | |
``nn.AvgPool1d``, ``nn.AvgPool2d``, ``nn.AvgPool3d``, | |
``nn.AdaptiveMaxPool1d``, ``nn.AdaptiveMaxPool2d``, | |
``nn.AdaptiveMaxPool3d``, ``nn.AdaptiveAvgPool1d``, | |
``nn.AdaptiveAvgPool2d``, ``nn.AdaptiveAvgPool3d``. | |
- BatchNorms: ``nn.BatchNorm1d``, ``nn.BatchNorm2d``, | |
``nn.BatchNorm3d``, ``nn.GroupNorm``, ``nn.InstanceNorm1d``, | |
``InstanceNorm2d``, ``InstanceNorm3d``, ``nn.LayerNorm``. | |
- Linear: ``nn.Linear``. | |
- Deconvolution: ``nn.ConvTranspose2d``. | |
- Upsample: ``nn.Upsample``. | |
Args: | |
model (nn.Module): The model for complexity calculation. | |
input_shape (tuple): Input shape used for calculation. | |
print_per_layer_stat (bool): Whether to print complexity information | |
for each layer in a model. Default: True. | |
as_strings (bool): Output FLOPs and params counts in a string form. | |
Default: True. | |
input_constructor (None | callable): If specified, it takes a callable | |
method that generates input. otherwise, it will generate a random | |
tensor with input shape to calculate FLOPs. Default: None. | |
flush (bool): same as that in :func:`print`. Default: False. | |
ost (stream): same as ``file`` param in :func:`print`. | |
Default: sys.stdout. | |
Returns: | |
tuple[float | str]: If ``as_strings`` is set to True, it will return | |
FLOPs and parameter counts in a string format. otherwise, it will | |
return those in a float number format. | |
""" | |
assert type(input_shape) is tuple | |
assert len(input_shape) >= 1 | |
assert isinstance(model, nn.Module) | |
flops_model = add_flops_counting_methods(model) | |
flops_model.eval() | |
flops_model.start_flops_count() | |
if input_constructor: | |
input = input_constructor(input_shape) | |
_ = flops_model(**input) | |
else: | |
try: | |
batch = torch.ones(()).new_empty( | |
(1, *input_shape), | |
dtype=next(flops_model.parameters()).dtype, | |
device=next(flops_model.parameters()).device) | |
except StopIteration: | |
# Avoid StopIteration for models which have no parameters, | |
# like `nn.Relu()`, `nn.AvgPool2d`, etc. | |
batch = torch.ones(()).new_empty((1, *input_shape)) | |
_ = flops_model(batch) | |
flops_count, params_count = flops_model.compute_average_flops_cost() | |
if print_per_layer_stat: | |
print_model_with_flops( | |
flops_model, flops_count, params_count, ost=ost, flush=flush) | |
flops_model.stop_flops_count() | |
if as_strings: | |
return flops_to_string(flops_count), params_to_string(params_count) | |
return flops_count, params_count | |
def flops_to_string(flops, units='GFLOPs', precision=2): | |
"""Convert FLOPs number into a string. | |
Note that Here we take a multiply-add counts as one FLOP. | |
Args: | |
flops (float): FLOPs number to be converted. | |
units (str | None): Converted FLOPs units. Options are None, 'GFLOPs', | |
'MFLOPs', 'KFLOPs', 'FLOPs'. If set to None, it will automatically | |
choose the most suitable unit for FLOPs. Default: 'GFLOPs'. | |
precision (int): Digit number after the decimal point. Default: 2. | |
Returns: | |
str: The converted FLOPs number with units. | |
Examples: | |
>>> flops_to_string(1e9) | |
'1.0 GFLOPs' | |
>>> flops_to_string(2e5, 'MFLOPs') | |
'0.2 MFLOPs' | |
>>> flops_to_string(3e-9, None) | |
'3e-09 FLOPs' | |
""" | |
if units is None: | |
if flops // 10**9 > 0: | |
return str(round(flops / 10.**9, precision)) + ' GFLOPs' | |
elif flops // 10**6 > 0: | |
return str(round(flops / 10.**6, precision)) + ' MFLOPs' | |
elif flops // 10**3 > 0: | |
return str(round(flops / 10.**3, precision)) + ' KFLOPs' | |
else: | |
return str(flops) + ' FLOPs' | |
else: | |
if units == 'GFLOPs': | |
return str(round(flops / 10.**9, precision)) + ' ' + units | |
elif units == 'MFLOPs': | |
return str(round(flops / 10.**6, precision)) + ' ' + units | |
elif units == 'KFLOPs': | |
return str(round(flops / 10.**3, precision)) + ' ' + units | |
else: | |
return str(flops) + ' FLOPs' | |
def params_to_string(num_params, units=None, precision=2): | |
"""Convert parameter number into a string. | |
Args: | |
num_params (float): Parameter number to be converted. | |
units (str | None): Converted FLOPs units. Options are None, 'M', | |
'K' and ''. If set to None, it will automatically choose the most | |
suitable unit for Parameter number. Default: None. | |
precision (int): Digit number after the decimal point. Default: 2. | |
Returns: | |
str: The converted parameter number with units. | |
Examples: | |
>>> params_to_string(1e9) | |
'1000.0 M' | |
>>> params_to_string(2e5) | |
'200.0 k' | |
>>> params_to_string(3e-9) | |
'3e-09' | |
""" | |
if units is None: | |
if num_params // 10**6 > 0: | |
return str(round(num_params / 10**6, precision)) + ' M' | |
elif num_params // 10**3: | |
return str(round(num_params / 10**3, precision)) + ' k' | |
else: | |
return str(num_params) | |
else: | |
if units == 'M': | |
return str(round(num_params / 10.**6, precision)) + ' ' + units | |
elif units == 'K': | |
return str(round(num_params / 10.**3, precision)) + ' ' + units | |
else: | |
return str(num_params) | |
def print_model_with_flops(model, | |
total_flops, | |
total_params, | |
units='GFLOPs', | |
precision=3, | |
ost=sys.stdout, | |
flush=False): | |
"""Print a model with FLOPs for each layer. | |
Args: | |
model (nn.Module): The model to be printed. | |
total_flops (float): Total FLOPs of the model. | |
total_params (float): Total parameter counts of the model. | |
units (str | None): Converted FLOPs units. Default: 'GFLOPs'. | |
precision (int): Digit number after the decimal point. Default: 3. | |
ost (stream): same as `file` param in :func:`print`. | |
Default: sys.stdout. | |
flush (bool): same as that in :func:`print`. Default: False. | |
Example: | |
>>> class ExampleModel(nn.Module): | |
>>> def __init__(self): | |
>>> super().__init__() | |
>>> self.conv1 = nn.Conv2d(3, 8, 3) | |
>>> self.conv2 = nn.Conv2d(8, 256, 3) | |
>>> self.conv3 = nn.Conv2d(256, 8, 3) | |
>>> self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) | |
>>> self.flatten = nn.Flatten() | |
>>> self.fc = nn.Linear(8, 1) | |
>>> def forward(self, x): | |
>>> x = self.conv1(x) | |
>>> x = self.conv2(x) | |
>>> x = self.conv3(x) | |
>>> x = self.avg_pool(x) | |
>>> x = self.flatten(x) | |
>>> x = self.fc(x) | |
>>> return x | |
>>> model = ExampleModel() | |
>>> x = (3, 16, 16) | |
to print the complexity information state for each layer, you can use | |
>>> get_model_complexity_info(model, x) | |
or directly use | |
>>> print_model_with_flops(model, 4579784.0, 37361) | |
ExampleModel( | |
0.037 M, 100.000% Params, 0.005 GFLOPs, 100.000% FLOPs, | |
(conv1): Conv2d(0.0 M, 0.600% Params, 0.0 GFLOPs, 0.959% FLOPs, 3, 8, kernel_size=(3, 3), stride=(1, 1)) # noqa: E501 | |
(conv2): Conv2d(0.019 M, 50.020% Params, 0.003 GFLOPs, 58.760% FLOPs, 8, 256, kernel_size=(3, 3), stride=(1, 1)) | |
(conv3): Conv2d(0.018 M, 49.356% Params, 0.002 GFLOPs, 40.264% FLOPs, 256, 8, kernel_size=(3, 3), stride=(1, 1)) | |
(avg_pool): AdaptiveAvgPool2d(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.017% FLOPs, output_size=(1, 1)) | |
(flatten): Flatten(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.000% FLOPs, ) | |
(fc): Linear(0.0 M, 0.024% Params, 0.0 GFLOPs, 0.000% FLOPs, in_features=8, out_features=1, bias=True) | |
) | |
""" | |
def accumulate_params(self): | |
if is_supported_instance(self): | |
return self.__params__ | |
else: | |
sum = 0 | |
for m in self.children(): | |
sum += m.accumulate_params() | |
return sum | |
def accumulate_flops(self): | |
if is_supported_instance(self): | |
return self.__flops__ / model.__batch_counter__ | |
else: | |
sum = 0 | |
for m in self.children(): | |
sum += m.accumulate_flops() | |
return sum | |
def flops_repr(self): | |
accumulated_num_params = self.accumulate_params() | |
accumulated_flops_cost = self.accumulate_flops() | |
return ', '.join([ | |
params_to_string( | |
accumulated_num_params, units='M', precision=precision), | |
'{:.3%} Params'.format(accumulated_num_params / total_params), | |
flops_to_string( | |
accumulated_flops_cost, units=units, precision=precision), | |
'{:.3%} FLOPs'.format(accumulated_flops_cost / total_flops), | |
self.original_extra_repr() | |
]) | |
def add_extra_repr(m): | |
m.accumulate_flops = accumulate_flops.__get__(m) | |
m.accumulate_params = accumulate_params.__get__(m) | |
flops_extra_repr = flops_repr.__get__(m) | |
if m.extra_repr != flops_extra_repr: | |
m.original_extra_repr = m.extra_repr | |
m.extra_repr = flops_extra_repr | |
assert m.extra_repr != m.original_extra_repr | |
def del_extra_repr(m): | |
if hasattr(m, 'original_extra_repr'): | |
m.extra_repr = m.original_extra_repr | |
del m.original_extra_repr | |
if hasattr(m, 'accumulate_flops'): | |
del m.accumulate_flops | |
model.apply(add_extra_repr) | |
print(model, file=ost, flush=flush) | |
model.apply(del_extra_repr) | |
def get_model_parameters_number(model): | |
"""Calculate parameter number of a model. | |
Args: | |
model (nn.module): The model for parameter number calculation. | |
Returns: | |
float: Parameter number of the model. | |
""" | |
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
return num_params | |
def add_flops_counting_methods(net_main_module): | |
# adding additional methods to the existing module object, | |
# this is done this way so that each function has access to self object | |
net_main_module.start_flops_count = start_flops_count.__get__( | |
net_main_module) | |
net_main_module.stop_flops_count = stop_flops_count.__get__( | |
net_main_module) | |
net_main_module.reset_flops_count = reset_flops_count.__get__( | |
net_main_module) | |
net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__( # noqa: E501 | |
net_main_module) | |
net_main_module.reset_flops_count() | |
return net_main_module | |
def compute_average_flops_cost(self): | |
"""Compute average FLOPs cost. | |
A method to compute average FLOPs cost, which will be available after | |
`add_flops_counting_methods()` is called on a desired net object. | |
Returns: | |
float: Current mean flops consumption per image. | |
""" | |
batches_count = self.__batch_counter__ | |
flops_sum = 0 | |
for module in self.modules(): | |
if is_supported_instance(module): | |
flops_sum += module.__flops__ | |
params_sum = get_model_parameters_number(self) | |
return flops_sum / batches_count, params_sum | |
def start_flops_count(self): | |
"""Activate the computation of mean flops consumption per image. | |
A method to activate the computation of mean flops consumption per image. | |
which will be available after ``add_flops_counting_methods()`` is called on | |
a desired net object. It should be called before running the network. | |
""" | |
add_batch_counter_hook_function(self) | |
def add_flops_counter_hook_function(module): | |
if is_supported_instance(module): | |
if hasattr(module, '__flops_handle__'): | |
return | |
else: | |
handle = module.register_forward_hook( | |
get_modules_mapping()[type(module)]) | |
module.__flops_handle__ = handle | |
self.apply(partial(add_flops_counter_hook_function)) | |
def stop_flops_count(self): | |
"""Stop computing the mean flops consumption per image. | |
A method to stop computing the mean flops consumption per image, which will | |
be available after ``add_flops_counting_methods()`` is called on a desired | |
net object. It can be called to pause the computation whenever. | |
""" | |
remove_batch_counter_hook_function(self) | |
self.apply(remove_flops_counter_hook_function) | |
def reset_flops_count(self): | |
"""Reset statistics computed so far. | |
A method to Reset computed statistics, which will be available after | |
`add_flops_counting_methods()` is called on a desired net object. | |
""" | |
add_batch_counter_variables_or_reset(self) | |
self.apply(add_flops_counter_variable_or_reset) | |
# ---- Internal functions | |
def empty_flops_counter_hook(module, input, output): | |
module.__flops__ += 0 | |
def upsample_flops_counter_hook(module, input, output): | |
output_size = output[0] | |
batch_size = output_size.shape[0] | |
output_elements_count = batch_size | |
for val in output_size.shape[1:]: | |
output_elements_count *= val | |
module.__flops__ += int(output_elements_count) | |
def relu_flops_counter_hook(module, input, output): | |
active_elements_count = output.numel() | |
module.__flops__ += int(active_elements_count) | |
def linear_flops_counter_hook(module, input, output): | |
input = input[0] | |
output_last_dim = output.shape[ | |
-1] # pytorch checks dimensions, so here we don't care much | |
module.__flops__ += int(np.prod(input.shape) * output_last_dim) | |
def pool_flops_counter_hook(module, input, output): | |
input = input[0] | |
module.__flops__ += int(np.prod(input.shape)) | |
def norm_flops_counter_hook(module, input, output): | |
input = input[0] | |
batch_flops = np.prod(input.shape) | |
if (getattr(module, 'affine', False) | |
or getattr(module, 'elementwise_affine', False)): | |
batch_flops *= 2 | |
module.__flops__ += int(batch_flops) | |
def deconv_flops_counter_hook(conv_module, input, output): | |
# Can have multiple inputs, getting the first one | |
input = input[0] | |
batch_size = input.shape[0] | |
input_height, input_width = input.shape[2:] | |
kernel_height, kernel_width = conv_module.kernel_size | |
in_channels = conv_module.in_channels | |
out_channels = conv_module.out_channels | |
groups = conv_module.groups | |
filters_per_channel = out_channels // groups | |
conv_per_position_flops = ( | |
kernel_height * kernel_width * in_channels * filters_per_channel) | |
active_elements_count = batch_size * input_height * input_width | |
overall_conv_flops = conv_per_position_flops * active_elements_count | |
bias_flops = 0 | |
if conv_module.bias is not None: | |
output_height, output_width = output.shape[2:] | |
bias_flops = out_channels * batch_size * output_height * output_height | |
overall_flops = overall_conv_flops + bias_flops | |
conv_module.__flops__ += int(overall_flops) | |
def conv_flops_counter_hook(conv_module, input, output): | |
# Can have multiple inputs, getting the first one | |
input = input[0] | |
batch_size = input.shape[0] | |
output_dims = list(output.shape[2:]) | |
kernel_dims = list(conv_module.kernel_size) | |
in_channels = conv_module.in_channels | |
out_channels = conv_module.out_channels | |
groups = conv_module.groups | |
filters_per_channel = out_channels // groups | |
conv_per_position_flops = int( | |
np.prod(kernel_dims)) * in_channels * filters_per_channel | |
active_elements_count = batch_size * int(np.prod(output_dims)) | |
overall_conv_flops = conv_per_position_flops * active_elements_count | |
bias_flops = 0 | |
if conv_module.bias is not None: | |
bias_flops = out_channels * active_elements_count | |
overall_flops = overall_conv_flops + bias_flops | |
conv_module.__flops__ += int(overall_flops) | |
def batch_counter_hook(module, input, output): | |
batch_size = 1 | |
if len(input) > 0: | |
# Can have multiple inputs, getting the first one | |
input = input[0] | |
batch_size = len(input) | |
else: | |
pass | |
print('Warning! No positional inputs found for a module, ' | |
'assuming batch size is 1.') | |
module.__batch_counter__ += batch_size | |
def add_batch_counter_variables_or_reset(module): | |
module.__batch_counter__ = 0 | |
def add_batch_counter_hook_function(module): | |
if hasattr(module, '__batch_counter_handle__'): | |
return | |
handle = module.register_forward_hook(batch_counter_hook) | |
module.__batch_counter_handle__ = handle | |
def remove_batch_counter_hook_function(module): | |
if hasattr(module, '__batch_counter_handle__'): | |
module.__batch_counter_handle__.remove() | |
del module.__batch_counter_handle__ | |
def add_flops_counter_variable_or_reset(module): | |
if is_supported_instance(module): | |
if hasattr(module, '__flops__') or hasattr(module, '__params__'): | |
print('Warning: variables __flops__ or __params__ are already ' | |
'defined for the module' + type(module).__name__ + | |
' ptflops can affect your code!') | |
module.__flops__ = 0 | |
module.__params__ = get_model_parameters_number(module) | |
def is_supported_instance(module): | |
if type(module) in get_modules_mapping(): | |
return True | |
return False | |
def remove_flops_counter_hook_function(module): | |
if is_supported_instance(module): | |
if hasattr(module, '__flops_handle__'): | |
module.__flops_handle__.remove() | |
del module.__flops_handle__ | |
def get_modules_mapping(): | |
return { | |
# convolutions | |
nn.Conv1d: conv_flops_counter_hook, | |
nn.Conv2d: conv_flops_counter_hook, | |
mmcv.cnn.bricks.Conv2d: conv_flops_counter_hook, | |
nn.Conv3d: conv_flops_counter_hook, | |
mmcv.cnn.bricks.Conv3d: conv_flops_counter_hook, | |
# activations | |
nn.ReLU: relu_flops_counter_hook, | |
nn.PReLU: relu_flops_counter_hook, | |
nn.ELU: relu_flops_counter_hook, | |
nn.LeakyReLU: relu_flops_counter_hook, | |
nn.ReLU6: relu_flops_counter_hook, | |
# poolings | |
nn.MaxPool1d: pool_flops_counter_hook, | |
nn.AvgPool1d: pool_flops_counter_hook, | |
nn.AvgPool2d: pool_flops_counter_hook, | |
nn.MaxPool2d: pool_flops_counter_hook, | |
mmcv.cnn.bricks.MaxPool2d: pool_flops_counter_hook, | |
nn.MaxPool3d: pool_flops_counter_hook, | |
mmcv.cnn.bricks.MaxPool3d: pool_flops_counter_hook, | |
nn.AvgPool3d: pool_flops_counter_hook, | |
nn.AdaptiveMaxPool1d: pool_flops_counter_hook, | |
nn.AdaptiveAvgPool1d: pool_flops_counter_hook, | |
nn.AdaptiveMaxPool2d: pool_flops_counter_hook, | |
nn.AdaptiveAvgPool2d: pool_flops_counter_hook, | |
nn.AdaptiveMaxPool3d: pool_flops_counter_hook, | |
nn.AdaptiveAvgPool3d: pool_flops_counter_hook, | |
# normalizations | |
nn.BatchNorm1d: norm_flops_counter_hook, | |
nn.BatchNorm2d: norm_flops_counter_hook, | |
nn.BatchNorm3d: norm_flops_counter_hook, | |
nn.GroupNorm: norm_flops_counter_hook, | |
nn.InstanceNorm1d: norm_flops_counter_hook, | |
nn.InstanceNorm2d: norm_flops_counter_hook, | |
nn.InstanceNorm3d: norm_flops_counter_hook, | |
nn.LayerNorm: norm_flops_counter_hook, | |
# FC | |
nn.Linear: linear_flops_counter_hook, | |
mmcv.cnn.bricks.Linear: linear_flops_counter_hook, | |
# Upscale | |
nn.Upsample: upsample_flops_counter_hook, | |
# Deconvolution | |
nn.ConvTranspose2d: deconv_flops_counter_hook, | |
mmcv.cnn.bricks.ConvTranspose2d: deconv_flops_counter_hook, | |
} | |