Spaces:
Runtime error
Runtime error
File size: 22,104 Bytes
58f667f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
# Modified from flops-counter.pytorch by Vladislav Sovrasov
# original repo: https://github.com/sovrasov/flops-counter.pytorch
# MIT License
# Copyright (c) 2018 Vladislav Sovrasov
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import sys
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import annotator.uniformer.mmcv as mmcv
def get_model_complexity_info(model,
input_shape,
print_per_layer_stat=True,
as_strings=True,
input_constructor=None,
flush=False,
ost=sys.stdout):
"""Get complexity information of a model.
This method can calculate FLOPs and parameter counts of a model with
corresponding input shape. It can also print complexity information for
each layer in a model.
Supported layers are listed as below:
- Convolutions: ``nn.Conv1d``, ``nn.Conv2d``, ``nn.Conv3d``.
- Activations: ``nn.ReLU``, ``nn.PReLU``, ``nn.ELU``, ``nn.LeakyReLU``,
``nn.ReLU6``.
- Poolings: ``nn.MaxPool1d``, ``nn.MaxPool2d``, ``nn.MaxPool3d``,
``nn.AvgPool1d``, ``nn.AvgPool2d``, ``nn.AvgPool3d``,
``nn.AdaptiveMaxPool1d``, ``nn.AdaptiveMaxPool2d``,
``nn.AdaptiveMaxPool3d``, ``nn.AdaptiveAvgPool1d``,
``nn.AdaptiveAvgPool2d``, ``nn.AdaptiveAvgPool3d``.
- BatchNorms: ``nn.BatchNorm1d``, ``nn.BatchNorm2d``,
``nn.BatchNorm3d``, ``nn.GroupNorm``, ``nn.InstanceNorm1d``,
``InstanceNorm2d``, ``InstanceNorm3d``, ``nn.LayerNorm``.
- Linear: ``nn.Linear``.
- Deconvolution: ``nn.ConvTranspose2d``.
- Upsample: ``nn.Upsample``.
Args:
model (nn.Module): The model for complexity calculation.
input_shape (tuple): Input shape used for calculation.
print_per_layer_stat (bool): Whether to print complexity information
for each layer in a model. Default: True.
as_strings (bool): Output FLOPs and params counts in a string form.
Default: True.
input_constructor (None | callable): If specified, it takes a callable
method that generates input. otherwise, it will generate a random
tensor with input shape to calculate FLOPs. Default: None.
flush (bool): same as that in :func:`print`. Default: False.
ost (stream): same as ``file`` param in :func:`print`.
Default: sys.stdout.
Returns:
tuple[float | str]: If ``as_strings`` is set to True, it will return
FLOPs and parameter counts in a string format. otherwise, it will
return those in a float number format.
"""
assert type(input_shape) is tuple
assert len(input_shape) >= 1
assert isinstance(model, nn.Module)
flops_model = add_flops_counting_methods(model)
flops_model.eval()
flops_model.start_flops_count()
if input_constructor:
input = input_constructor(input_shape)
_ = flops_model(**input)
else:
try:
batch = torch.ones(()).new_empty(
(1, *input_shape),
dtype=next(flops_model.parameters()).dtype,
device=next(flops_model.parameters()).device)
except StopIteration:
# Avoid StopIteration for models which have no parameters,
# like `nn.Relu()`, `nn.AvgPool2d`, etc.
batch = torch.ones(()).new_empty((1, *input_shape))
_ = flops_model(batch)
flops_count, params_count = flops_model.compute_average_flops_cost()
if print_per_layer_stat:
print_model_with_flops(
flops_model, flops_count, params_count, ost=ost, flush=flush)
flops_model.stop_flops_count()
if as_strings:
return flops_to_string(flops_count), params_to_string(params_count)
return flops_count, params_count
def flops_to_string(flops, units='GFLOPs', precision=2):
"""Convert FLOPs number into a string.
Note that Here we take a multiply-add counts as one FLOP.
Args:
flops (float): FLOPs number to be converted.
units (str | None): Converted FLOPs units. Options are None, 'GFLOPs',
'MFLOPs', 'KFLOPs', 'FLOPs'. If set to None, it will automatically
choose the most suitable unit for FLOPs. Default: 'GFLOPs'.
precision (int): Digit number after the decimal point. Default: 2.
Returns:
str: The converted FLOPs number with units.
Examples:
>>> flops_to_string(1e9)
'1.0 GFLOPs'
>>> flops_to_string(2e5, 'MFLOPs')
'0.2 MFLOPs'
>>> flops_to_string(3e-9, None)
'3e-09 FLOPs'
"""
if units is None:
if flops // 10**9 > 0:
return str(round(flops / 10.**9, precision)) + ' GFLOPs'
elif flops // 10**6 > 0:
return str(round(flops / 10.**6, precision)) + ' MFLOPs'
elif flops // 10**3 > 0:
return str(round(flops / 10.**3, precision)) + ' KFLOPs'
else:
return str(flops) + ' FLOPs'
else:
if units == 'GFLOPs':
return str(round(flops / 10.**9, precision)) + ' ' + units
elif units == 'MFLOPs':
return str(round(flops / 10.**6, precision)) + ' ' + units
elif units == 'KFLOPs':
return str(round(flops / 10.**3, precision)) + ' ' + units
else:
return str(flops) + ' FLOPs'
def params_to_string(num_params, units=None, precision=2):
"""Convert parameter number into a string.
Args:
num_params (float): Parameter number to be converted.
units (str | None): Converted FLOPs units. Options are None, 'M',
'K' and ''. If set to None, it will automatically choose the most
suitable unit for Parameter number. Default: None.
precision (int): Digit number after the decimal point. Default: 2.
Returns:
str: The converted parameter number with units.
Examples:
>>> params_to_string(1e9)
'1000.0 M'
>>> params_to_string(2e5)
'200.0 k'
>>> params_to_string(3e-9)
'3e-09'
"""
if units is None:
if num_params // 10**6 > 0:
return str(round(num_params / 10**6, precision)) + ' M'
elif num_params // 10**3:
return str(round(num_params / 10**3, precision)) + ' k'
else:
return str(num_params)
else:
if units == 'M':
return str(round(num_params / 10.**6, precision)) + ' ' + units
elif units == 'K':
return str(round(num_params / 10.**3, precision)) + ' ' + units
else:
return str(num_params)
def print_model_with_flops(model,
total_flops,
total_params,
units='GFLOPs',
precision=3,
ost=sys.stdout,
flush=False):
"""Print a model with FLOPs for each layer.
Args:
model (nn.Module): The model to be printed.
total_flops (float): Total FLOPs of the model.
total_params (float): Total parameter counts of the model.
units (str | None): Converted FLOPs units. Default: 'GFLOPs'.
precision (int): Digit number after the decimal point. Default: 3.
ost (stream): same as `file` param in :func:`print`.
Default: sys.stdout.
flush (bool): same as that in :func:`print`. Default: False.
Example:
>>> class ExampleModel(nn.Module):
>>> def __init__(self):
>>> super().__init__()
>>> self.conv1 = nn.Conv2d(3, 8, 3)
>>> self.conv2 = nn.Conv2d(8, 256, 3)
>>> self.conv3 = nn.Conv2d(256, 8, 3)
>>> self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
>>> self.flatten = nn.Flatten()
>>> self.fc = nn.Linear(8, 1)
>>> def forward(self, x):
>>> x = self.conv1(x)
>>> x = self.conv2(x)
>>> x = self.conv3(x)
>>> x = self.avg_pool(x)
>>> x = self.flatten(x)
>>> x = self.fc(x)
>>> return x
>>> model = ExampleModel()
>>> x = (3, 16, 16)
to print the complexity information state for each layer, you can use
>>> get_model_complexity_info(model, x)
or directly use
>>> print_model_with_flops(model, 4579784.0, 37361)
ExampleModel(
0.037 M, 100.000% Params, 0.005 GFLOPs, 100.000% FLOPs,
(conv1): Conv2d(0.0 M, 0.600% Params, 0.0 GFLOPs, 0.959% FLOPs, 3, 8, kernel_size=(3, 3), stride=(1, 1)) # noqa: E501
(conv2): Conv2d(0.019 M, 50.020% Params, 0.003 GFLOPs, 58.760% FLOPs, 8, 256, kernel_size=(3, 3), stride=(1, 1))
(conv3): Conv2d(0.018 M, 49.356% Params, 0.002 GFLOPs, 40.264% FLOPs, 256, 8, kernel_size=(3, 3), stride=(1, 1))
(avg_pool): AdaptiveAvgPool2d(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.017% FLOPs, output_size=(1, 1))
(flatten): Flatten(0.0 M, 0.000% Params, 0.0 GFLOPs, 0.000% FLOPs, )
(fc): Linear(0.0 M, 0.024% Params, 0.0 GFLOPs, 0.000% FLOPs, in_features=8, out_features=1, bias=True)
)
"""
def accumulate_params(self):
if is_supported_instance(self):
return self.__params__
else:
sum = 0
for m in self.children():
sum += m.accumulate_params()
return sum
def accumulate_flops(self):
if is_supported_instance(self):
return self.__flops__ / model.__batch_counter__
else:
sum = 0
for m in self.children():
sum += m.accumulate_flops()
return sum
def flops_repr(self):
accumulated_num_params = self.accumulate_params()
accumulated_flops_cost = self.accumulate_flops()
return ', '.join([
params_to_string(
accumulated_num_params, units='M', precision=precision),
'{:.3%} Params'.format(accumulated_num_params / total_params),
flops_to_string(
accumulated_flops_cost, units=units, precision=precision),
'{:.3%} FLOPs'.format(accumulated_flops_cost / total_flops),
self.original_extra_repr()
])
def add_extra_repr(m):
m.accumulate_flops = accumulate_flops.__get__(m)
m.accumulate_params = accumulate_params.__get__(m)
flops_extra_repr = flops_repr.__get__(m)
if m.extra_repr != flops_extra_repr:
m.original_extra_repr = m.extra_repr
m.extra_repr = flops_extra_repr
assert m.extra_repr != m.original_extra_repr
def del_extra_repr(m):
if hasattr(m, 'original_extra_repr'):
m.extra_repr = m.original_extra_repr
del m.original_extra_repr
if hasattr(m, 'accumulate_flops'):
del m.accumulate_flops
model.apply(add_extra_repr)
print(model, file=ost, flush=flush)
model.apply(del_extra_repr)
def get_model_parameters_number(model):
"""Calculate parameter number of a model.
Args:
model (nn.module): The model for parameter number calculation.
Returns:
float: Parameter number of the model.
"""
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return num_params
def add_flops_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
net_main_module.start_flops_count = start_flops_count.__get__(
net_main_module)
net_main_module.stop_flops_count = stop_flops_count.__get__(
net_main_module)
net_main_module.reset_flops_count = reset_flops_count.__get__(
net_main_module)
net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__( # noqa: E501
net_main_module)
net_main_module.reset_flops_count()
return net_main_module
def compute_average_flops_cost(self):
"""Compute average FLOPs cost.
A method to compute average FLOPs cost, which will be available after
`add_flops_counting_methods()` is called on a desired net object.
Returns:
float: Current mean flops consumption per image.
"""
batches_count = self.__batch_counter__
flops_sum = 0
for module in self.modules():
if is_supported_instance(module):
flops_sum += module.__flops__
params_sum = get_model_parameters_number(self)
return flops_sum / batches_count, params_sum
def start_flops_count(self):
"""Activate the computation of mean flops consumption per image.
A method to activate the computation of mean flops consumption per image.
which will be available after ``add_flops_counting_methods()`` is called on
a desired net object. It should be called before running the network.
"""
add_batch_counter_hook_function(self)
def add_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
return
else:
handle = module.register_forward_hook(
get_modules_mapping()[type(module)])
module.__flops_handle__ = handle
self.apply(partial(add_flops_counter_hook_function))
def stop_flops_count(self):
"""Stop computing the mean flops consumption per image.
A method to stop computing the mean flops consumption per image, which will
be available after ``add_flops_counting_methods()`` is called on a desired
net object. It can be called to pause the computation whenever.
"""
remove_batch_counter_hook_function(self)
self.apply(remove_flops_counter_hook_function)
def reset_flops_count(self):
"""Reset statistics computed so far.
A method to Reset computed statistics, which will be available after
`add_flops_counting_methods()` is called on a desired net object.
"""
add_batch_counter_variables_or_reset(self)
self.apply(add_flops_counter_variable_or_reset)
# ---- Internal functions
def empty_flops_counter_hook(module, input, output):
module.__flops__ += 0
def upsample_flops_counter_hook(module, input, output):
output_size = output[0]
batch_size = output_size.shape[0]
output_elements_count = batch_size
for val in output_size.shape[1:]:
output_elements_count *= val
module.__flops__ += int(output_elements_count)
def relu_flops_counter_hook(module, input, output):
active_elements_count = output.numel()
module.__flops__ += int(active_elements_count)
def linear_flops_counter_hook(module, input, output):
input = input[0]
output_last_dim = output.shape[
-1] # pytorch checks dimensions, so here we don't care much
module.__flops__ += int(np.prod(input.shape) * output_last_dim)
def pool_flops_counter_hook(module, input, output):
input = input[0]
module.__flops__ += int(np.prod(input.shape))
def norm_flops_counter_hook(module, input, output):
input = input[0]
batch_flops = np.prod(input.shape)
if (getattr(module, 'affine', False)
or getattr(module, 'elementwise_affine', False)):
batch_flops *= 2
module.__flops__ += int(batch_flops)
def deconv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = input.shape[0]
input_height, input_width = input.shape[2:]
kernel_height, kernel_width = conv_module.kernel_size
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = (
kernel_height * kernel_width * in_channels * filters_per_channel)
active_elements_count = batch_size * input_height * input_width
overall_conv_flops = conv_per_position_flops * active_elements_count
bias_flops = 0
if conv_module.bias is not None:
output_height, output_width = output.shape[2:]
bias_flops = out_channels * batch_size * output_height * output_height
overall_flops = overall_conv_flops + bias_flops
conv_module.__flops__ += int(overall_flops)
def conv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = input.shape[0]
output_dims = list(output.shape[2:])
kernel_dims = list(conv_module.kernel_size)
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = int(
np.prod(kernel_dims)) * in_channels * filters_per_channel
active_elements_count = batch_size * int(np.prod(output_dims))
overall_conv_flops = conv_per_position_flops * active_elements_count
bias_flops = 0
if conv_module.bias is not None:
bias_flops = out_channels * active_elements_count
overall_flops = overall_conv_flops + bias_flops
conv_module.__flops__ += int(overall_flops)
def batch_counter_hook(module, input, output):
batch_size = 1
if len(input) > 0:
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = len(input)
else:
pass
print('Warning! No positional inputs found for a module, '
'assuming batch size is 1.')
module.__batch_counter__ += batch_size
def add_batch_counter_variables_or_reset(module):
module.__batch_counter__ = 0
def add_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
return
handle = module.register_forward_hook(batch_counter_hook)
module.__batch_counter_handle__ = handle
def remove_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
module.__batch_counter_handle__.remove()
del module.__batch_counter_handle__
def add_flops_counter_variable_or_reset(module):
if is_supported_instance(module):
if hasattr(module, '__flops__') or hasattr(module, '__params__'):
print('Warning: variables __flops__ or __params__ are already '
'defined for the module' + type(module).__name__ +
' ptflops can affect your code!')
module.__flops__ = 0
module.__params__ = get_model_parameters_number(module)
def is_supported_instance(module):
if type(module) in get_modules_mapping():
return True
return False
def remove_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
module.__flops_handle__.remove()
del module.__flops_handle__
def get_modules_mapping():
return {
# convolutions
nn.Conv1d: conv_flops_counter_hook,
nn.Conv2d: conv_flops_counter_hook,
mmcv.cnn.bricks.Conv2d: conv_flops_counter_hook,
nn.Conv3d: conv_flops_counter_hook,
mmcv.cnn.bricks.Conv3d: conv_flops_counter_hook,
# activations
nn.ReLU: relu_flops_counter_hook,
nn.PReLU: relu_flops_counter_hook,
nn.ELU: relu_flops_counter_hook,
nn.LeakyReLU: relu_flops_counter_hook,
nn.ReLU6: relu_flops_counter_hook,
# poolings
nn.MaxPool1d: pool_flops_counter_hook,
nn.AvgPool1d: pool_flops_counter_hook,
nn.AvgPool2d: pool_flops_counter_hook,
nn.MaxPool2d: pool_flops_counter_hook,
mmcv.cnn.bricks.MaxPool2d: pool_flops_counter_hook,
nn.MaxPool3d: pool_flops_counter_hook,
mmcv.cnn.bricks.MaxPool3d: pool_flops_counter_hook,
nn.AvgPool3d: pool_flops_counter_hook,
nn.AdaptiveMaxPool1d: pool_flops_counter_hook,
nn.AdaptiveAvgPool1d: pool_flops_counter_hook,
nn.AdaptiveMaxPool2d: pool_flops_counter_hook,
nn.AdaptiveAvgPool2d: pool_flops_counter_hook,
nn.AdaptiveMaxPool3d: pool_flops_counter_hook,
nn.AdaptiveAvgPool3d: pool_flops_counter_hook,
# normalizations
nn.BatchNorm1d: norm_flops_counter_hook,
nn.BatchNorm2d: norm_flops_counter_hook,
nn.BatchNorm3d: norm_flops_counter_hook,
nn.GroupNorm: norm_flops_counter_hook,
nn.InstanceNorm1d: norm_flops_counter_hook,
nn.InstanceNorm2d: norm_flops_counter_hook,
nn.InstanceNorm3d: norm_flops_counter_hook,
nn.LayerNorm: norm_flops_counter_hook,
# FC
nn.Linear: linear_flops_counter_hook,
mmcv.cnn.bricks.Linear: linear_flops_counter_hook,
# Upscale
nn.Upsample: upsample_flops_counter_hook,
# Deconvolution
nn.ConvTranspose2d: deconv_flops_counter_hook,
mmcv.cnn.bricks.ConvTranspose2d: deconv_flops_counter_hook,
}
|