File size: 14,516 Bytes
f5fbd23
 
007d795
f5fbd23
9d6df4b
 
 
 
 
 
17991a3
0052d38
007d795
a2433fb
 
17e6c9d
 
 
 
 
 
 
 
a2433fb
 
0052d38
e25cab4
9d6df4b
a2433fb
0052d38
 
a2433fb
0052d38
 
 
 
 
 
e25cab4
a2433fb
dccbeb8
a2433fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
007d795
5f52218
a2433fb
0052d38
5f52218
0052d38
a2433fb
0052d38
 
17e6c9d
 
 
 
 
 
007d795
 
 
0052d38
a2433fb
17e6c9d
 
 
 
 
 
0052d38
 
17e6c9d
a2433fb
17e6c9d
 
 
 
 
 
 
 
 
 
0052d38
 
a2433fb
 
 
 
0052d38
a2433fb
5f52218
a2433fb
0052d38
8ad7e0c
a2433fb
0052d38
a2433fb
0052d38
a2433fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0052d38
 
 
a2433fb
e25cab4
 
 
a2433fb
0052d38
 
 
e25cab4
0052d38
 
17e6c9d
 
 
0052d38
 
 
a2433fb
0052d38
 
 
 
a2433fb
0052d38
 
 
 
 
 
007d795
17e6c9d
0052d38
 
 
 
 
 
 
 
a2433fb
5f52218
a2433fb
 
 
 
 
 
 
 
 
f5fbd23
007d795
f5fbd23
0052d38
 
 
f5fbd23
17e6c9d
5b0dfba
a2433fb
5b0dfba
 
 
a2433fb
 
17e6c9d
a2433fb
 
 
f5fbd23
0052d38
 
a2433fb
 
5b0dfba
a2433fb
5b0dfba
 
 
 
a2433fb
5b0dfba
0052d38
 
5b0dfba
0052d38
5b475af
0052d38
007d795
0052d38
007d795
0052d38
 
 
f5fbd23
5b475af
a2433fb
17e6c9d
f5fbd23
0052d38
007d795
0052d38
5b0dfba
9d6df4b
0052d38
f5fbd23
0052d38
 
 
 
007d795
0052d38
 
007d795
0052d38
 
 
 
 
 
 
d8bea64
0052d38
 
5b0dfba
 
 
 
 
 
0052d38
5b0dfba
 
 
 
 
 
 
 
 
17e6c9d
0052d38
5b0dfba
 
0052d38
007d795
d8bea64
007d795
0052d38
007d795
0052d38
f5fbd23
a2433fb
0052d38
f5fbd23
 
e25cab4
007d795
e25cab4
 
f5fbd23
 
0052d38
 
 
 
 
 
 
f5fbd23
 
 
007d795
f5fbd23
 
0052d38
f5fbd23
e25cab4
 
 
 
0052d38
e25cab4
0052d38
d8bea64
0052d38
d8bea64
 
f5fbd23
 
0052d38
 
f5fbd23
 
0052d38
f5fbd23
 
0052d38
007d795
f5fbd23
d8bea64
f5fbd23
 
 
 
0052d38
007d795
f5fbd23
 
 
17e6c9d
a2433fb
 
 
17e6c9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import cv2
import numpy as np
from transformers import CLIPProcessor, CLIPModel, Blip2Processor, Blip2ForConditionalGeneration
import torch
from PIL import Image
import faiss
import logging
import gradio as gr
import tempfile
import os
import shutil
from tqdm.auto import tqdm
from pathlib import Path
from typing import List, Dict, Tuple, Optional
import gc
import warnings
warnings.filterwarnings("ignore")

# Configure model caching and environment
os.environ["TRANSFORMERS_CACHE"] = "./model_cache"
os.environ["HF_HOME"] = "./model_cache"
os.makedirs("./model_cache", exist_ok=True)

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

class VideoProcessor:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        logging.info(f"Using device: {self.device}")
        
        # Load models with optimizations
        self._load_models()
        
        # Processing settings
        self.frame_interval = 30  # Process 1 frame every 30 frames
        self.max_frames = 50      # Maximum frames to process
        self.target_size = (224, 224)
        self.batch_size = 4 if torch.cuda.is_available() else 2

    def _load_models(self):
        """Load models with optimizations and proper configurations"""
        try:
            logging.info("Loading CLIP model...")
            self.clip_model = CLIPModel.from_pretrained(
                "openai/clip-vit-base-patch32",
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                cache_dir="./model_cache"
            ).to(self.device)
            self.clip_processor = CLIPProcessor.from_pretrained(
                "openai/clip-vit-base-patch32",
                cache_dir="./model_cache"
            )

            logging.info("Loading BLIP2 model...")
            model_name = "Salesforce/blip2-opt-2.7b"
            
            # Initialize BLIP2 with minimal configuration
            self.blip_processor = Blip2Processor.from_pretrained(
                model_name,
                cache_dir="./model_cache"
            )

            self.blip_model = Blip2ForConditionalGeneration.from_pretrained(
                model_name,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                device_map="auto" if torch.cuda.is_available() else None,
                cache_dir="./model_cache",
                low_cpu_mem_usage=True
            ).to(self.device)

            # Set models to evaluation mode
            self.clip_model.eval()
            self.blip_model.eval()
            
            logging.info("Models loaded successfully!")
        except Exception as e:
            logging.error(f"Error loading models: {str(e)}")
            raise

    def _preprocess_frame(self, frame: np.ndarray) -> Image.Image:
        """Preprocess a single frame"""
        rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        return Image.fromarray(rgb_frame).resize(self.target_size, Image.LANCZOS)

    @torch.no_grad()
    def process_frame_batch(self, frames: List[np.ndarray]) -> Tuple[Optional[np.ndarray], Optional[List[str]]]:
        """Process a batch of frames efficiently"""
        try:
            # Convert frames to PIL Images
            pil_frames = [self._preprocess_frame(f) for f in frames]
            
            # Get CLIP features
            clip_inputs = self.clip_processor(
                images=pil_frames, 
                return_tensors="pt", 
                padding=True
            ).to(self.device)
            
            if self.device.type == "cuda":
                clip_inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in clip_inputs.items()}
            features = self.clip_model.get_image_features(**clip_inputs)
            
            # Get BLIP captions
            blip_inputs = self.blip_processor(
                images=pil_frames,
                return_tensors="pt",
                padding=True
            ).to(self.device)
            
            if self.device.type == "cuda":
                blip_inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in blip_inputs.items()}
            
            # Generate captions
            captions = self.blip_model.generate(
                **blip_inputs,
                max_length=30,
                min_length=10,
                num_beams=5,
                length_penalty=1.0,
                temperature=0.7,
                do_sample=False
            )
            
            captions = [self.blip_processor.decode(c, skip_special_tokens=True) for c in captions]
            
            # Clear GPU memory if needed
            if self.device.type == "cuda":
                torch.cuda.empty_cache()
            
            return features.cpu().numpy(), captions
            
        except Exception as e:
            logging.error(f"Error in batch processing: {str(e)}")
            return None, None

    def process_video(self, video_path: str, progress: gr.Progress) -> Tuple[Optional[faiss.Index], Optional[List[Dict]], str]:
        """Process video with batching and progress updates"""
        cap = None
        try:
            cap = cv2.VideoCapture(video_path)
            if not cap.isOpened():
                raise ValueError(f"Could not open video file: {video_path}")
            
            total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
            fps = cap.get(cv2.CAP_PROP_FPS)
            
            # Calculate frames to process
            frames_to_process = min(self.max_frames, total_frames // self.frame_interval)
            progress(0, desc="Initializing video processing...")
            
            features_list = []
            frame_data = []
            current_batch = []
            batch_positions = []
            
            frame_count = 0
            processed_count = 0
            
            while processed_count < frames_to_process:
                ret, frame = cap.read()
                if not ret:
                    break
                
                if frame_count % self.frame_interval == 0:
                    current_batch.append(frame)
                    batch_positions.append(frame_count)
                    
                    # Process batch when full
                    if len(current_batch) == self.batch_size or frame_count == total_frames - 1:
                        progress(processed_count / frames_to_process, 
                               desc=f"Processing frames... {processed_count}/{frames_to_process}")
                        
                        features, captions = self.process_frame_batch(current_batch)
                        
                        if features is not None and captions is not None:
                            for i, (feat, cap_text) in enumerate(zip(features, captions)):
                                features_list.append(feat)
                                frame_data.append({
                                    'frame_number': batch_positions[i],
                                    'timestamp': batch_positions[i] / fps,
                                    'caption': cap_text
                                })
                        
                        processed_count += len(current_batch)
                        current_batch = []
                        batch_positions = []
                
                frame_count += 1
            
            # Create FAISS index
            if features_list:
                features_array = np.vstack(features_list)
                frame_index = faiss.IndexFlatL2(features_array.shape[1])
                frame_index.add(features_array)
                return frame_index, frame_data, "Video processed successfully!"
            else:
                return None, None, "No frames were processed successfully."

        except Exception as e:
            logging.error(f"Error processing video: {str(e)}")
            return None, None, f"Error processing video: {str(e)}"
            
        finally:
            if cap is not None:
                cap.release()
            gc.collect()
            if self.device.type == "cuda":
                torch.cuda.empty_cache()

class VideoQAInterface:
    def __init__(self):
        self.processor = VideoProcessor()
        self.frame_index = None
        self.frame_data = None
        self.processed = False
        self.current_video_path = None
        self.temp_dir = tempfile.mkdtemp()
        logging.info(f"Initialized temp directory: {self.temp_dir}")

    def __del__(self):
        """Cleanup temporary files"""
        try:
            if hasattr(self, 'temp_dir') and os.path.exists(self.temp_dir):
                shutil.rmtree(self.temp_dir)
                logging.info(f"Cleaned up temp directory: {self.temp_dir}")
        except Exception as e:
            logging.error(f"Error cleaning up temp directory: {str(e)}")

    def process_video(self, video_file, progress=gr.Progress()):
        """Process video with progress tracking"""
        if video_file is None:
            return "Please upload a video first."
            
        try:
            # Save uploaded video to temp directory
            temp_video_path = os.path.join(self.temp_dir, "input_video.mp4")
            shutil.copy2(video_file.name, temp_video_path)
            self.current_video_path = temp_video_path
            logging.info(f"Saved video to: {self.current_video_path}")
            
            progress(0, desc="Starting video processing...")
            self.frame_index, self.frame_data, message = self.processor.process_video(
                self.current_video_path, progress
            )
            
            if self.frame_index is not None:
                self.processed = True
                return "Video processed successfully! You can now ask questions."
            else:
                self.processed = False
                return message
                
        except Exception as e:
            self.processed = False
            logging.error(f"Error processing video: {str(e)}")
            return f"Error processing video: {str(e)}"

    @torch.no_grad()
    def answer_question(self, query):
        """Answer questions about the video"""
        if not self.processed or self.current_video_path is None:
            return None, "Please process a video first."
            
        try:
            # Get query features
            inputs = self.processor.clip_processor(text=[query], return_tensors="pt").to(self.processor.device)
            query_features = self.processor.clip_model.get_text_features(**inputs)
            
            # Search for relevant frames
            k = 4  # Number of frames to retrieve
            D, I = self.frame_index.search(query_features.cpu().numpy(), k)
            
            results = []
            for distance, idx in zip(D[0], I[0]):
                frame_info = self.frame_data[idx].copy()
                frame_info['relevance'] = float(1 / (1 + distance))
                results.append(frame_info)
            
            # Format output
            descriptions = []
            frames = []
            
            cap = cv2.VideoCapture(self.current_video_path)
            try:
                for result in results:
                    frame_number = result['frame_number']
                    cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
                    ret, frame = cap.read()
                    
                    if ret:
                        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                        frames.append(Image.fromarray(frame_rgb))
                        
                        desc = f"Timestamp: {result['timestamp']:.2f}s\n"
                        desc += f"Scene Description: {result['caption']}\n"
                        desc += f"Relevance Score: {result['relevance']:.2f}"
                        descriptions.append(desc)
            finally:
                cap.release()
            
            if not frames:
                return None, "No relevant frames found."
            
            combined_desc = "\n\nFrame Analysis:\n\n"
            for i, desc in enumerate(descriptions, 1):
                combined_desc += f"Frame {i}:\n{desc}\n\n"
                
            return frames, combined_desc
            
        except Exception as e:
            logging.error(f"Error answering question: {str(e)}")
            return None, f"Error answering question: {str(e)}"

    def create_interface(self):
        """Create Gradio interface"""
        with gr.Blocks(title="Advanced Video Question Answering") as interface:
            gr.Markdown("# Advanced Video Question Answering")
            gr.Markdown("Upload a video and ask questions about any aspect of its content!")
            
            with gr.Row():
                with gr.Column():
                    video_input = gr.File(
                        label="Upload Video",
                        file_types=["video"]
                    )
                    status = gr.Textbox(label="Status", interactive=False)
                    process_btn = gr.Button("Process Video")
            
            with gr.Row():
                query_input = gr.Textbox(
                    label="Ask about the video",
                    placeholder="What's happening in the video?"
                )
                query_btn = gr.Button("Search")
            
            gallery = gr.Gallery(
                label="Retrieved Frames",
                show_label=True,
                columns=[2],
                rows=[2]
            )
            
            descriptions = gr.Textbox(
                label="Analysis",
                interactive=False,
                lines=10
            )
            
            # Set up event handlers
            process_btn.click(
                fn=self.process_video,
                inputs=[video_input],
                outputs=[status]
            )
            
            query_btn.click(
                fn=self.answer_question,
                inputs=[query_input],
                outputs=[gallery, descriptions]
            )
        
        return interface

# Create and launch the app
app = VideoQAInterface()
interface = app.create_interface()

if __name__ == "__main__":
    interface.launch(
        server_name="0.0.0.0",
        share=False,
        show_error=True
    )