capradeepgujaran
commited on
Commit
•
007d795
1
Parent(s):
e25cab4
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,6 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
from transformers import
|
4 |
-
CLIPProcessor, CLIPModel,
|
5 |
-
BlipProcessor, BlipForConditionalGeneration,
|
6 |
-
Blip2Processor, Blip2ForConditionalGeneration,
|
7 |
-
AutoProcessor, AutoModelForObjectDetection
|
8 |
-
)
|
9 |
import torch
|
10 |
from PIL import Image
|
11 |
import faiss
|
@@ -16,43 +11,37 @@ import tempfile
|
|
16 |
import os
|
17 |
import shutil
|
18 |
from tqdm import tqdm
|
|
|
|
|
19 |
|
20 |
-
class
|
21 |
def __init__(self):
|
22 |
self.logger = self.setup_logger()
|
23 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
self.logger.info(f"Using device: {self.device}")
|
25 |
|
26 |
-
# Initialize
|
27 |
-
self.
|
28 |
-
self.
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
self.blip2_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
34 |
-
self.blip2_model = Blip2ForConditionalGeneration.from_pretrained(
|
35 |
-
"Salesforce/blip2-opt-2.7b",
|
36 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
37 |
).to(self.device)
|
38 |
|
39 |
-
#
|
40 |
-
self.logger.info("Loading object detection model...")
|
41 |
-
self.obj_processor = AutoProcessor.from_pretrained("microsoft/table-transformer-detection")
|
42 |
-
self.obj_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection").to(self.device)
|
43 |
-
|
44 |
self.frame_index = None
|
45 |
self.frame_data = []
|
46 |
-
self.target_size = (
|
47 |
-
self.batch_size = 4
|
48 |
|
49 |
-
#
|
50 |
-
self.
|
51 |
-
self.
|
52 |
-
self.
|
53 |
|
54 |
def setup_logger(self) -> logging.Logger:
|
55 |
-
logger = logging.getLogger('
|
56 |
if logger.handlers:
|
57 |
logger.handlers.clear()
|
58 |
logger.setLevel(logging.INFO)
|
@@ -62,256 +51,218 @@ class EnhancedVideoAnalyzer:
|
|
62 |
logger.addHandler(handler)
|
63 |
return logger
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
@torch.no_grad()
|
66 |
def analyze_frame(self, image: Image.Image) -> Dict:
|
67 |
"""Comprehensive frame analysis"""
|
68 |
try:
|
69 |
-
#
|
70 |
-
inputs = self.
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
obj_outputs, threshold=0.5, target_sizes=target_sizes
|
82 |
-
)[0]
|
83 |
-
|
84 |
-
detected_objects = []
|
85 |
-
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
86 |
-
detected_objects.append({
|
87 |
-
"label": self.obj_processor.model.config.id2label[label.item()],
|
88 |
-
"confidence": score.item()
|
89 |
-
})
|
90 |
|
91 |
return {
|
92 |
"caption": caption_text,
|
93 |
-
"
|
94 |
}
|
95 |
-
|
96 |
except Exception as e:
|
97 |
-
self.logger.error(f"
|
98 |
-
return
|
99 |
|
100 |
-
def extract_keyframes(self, video_path: str, max_frames: int = 15) -> List[
|
101 |
-
"""Extract key frames
|
102 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
103 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
frames = []
|
110 |
-
frame_positions = []
|
111 |
-
prev_gray = None
|
112 |
-
|
113 |
-
with tqdm(total=total_frames, desc="Extracting frames") as pbar:
|
114 |
-
while cap.isOpened() and len(frames) < max_frames:
|
115 |
ret, frame = cap.read()
|
116 |
if not ret:
|
117 |
break
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
# Calculate frame difference
|
124 |
-
diff = cv2.absdiff(gray, prev_gray)
|
125 |
-
mean_diff = np.mean(diff)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
135 |
cap.release()
|
136 |
-
return
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
"""Process video with comprehensive analysis"""
|
141 |
self.logger.info(f"Processing video: {video_path}")
|
142 |
-
self.frame_data = []
|
143 |
-
features_list = []
|
144 |
|
145 |
try:
|
146 |
-
# Extract
|
147 |
-
|
148 |
-
self.
|
149 |
-
|
150 |
-
#
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
image = Image.fromarray(frame_rgb).resize(self.target_size, Image.LANCZOS)
|
156 |
-
|
157 |
-
# Analyze frame
|
158 |
-
analysis = self.analyze_frame(image)
|
159 |
-
|
160 |
-
# Get CLIP features
|
161 |
-
clip_inputs = self.clip_processor(images=image, return_tensors="pt").to(self.device)
|
162 |
-
image_features = self.clip_model.get_image_features(**clip_inputs)
|
163 |
-
|
164 |
-
# Store results
|
165 |
-
self.frame_data.append({
|
166 |
-
'frame_number': int(frame_pos),
|
167 |
-
'timestamp': frame_pos / 30.0, # Approximate timestamp
|
168 |
-
'caption': analysis['caption'],
|
169 |
-
'objects': analysis['objects']
|
170 |
-
})
|
171 |
-
|
172 |
-
features_list.append(image_features.cpu().numpy())
|
173 |
-
pbar.update(1)
|
174 |
-
|
175 |
-
# Create FAISS index
|
176 |
-
if features_list:
|
177 |
-
features_array = np.vstack(features_list)
|
178 |
-
self.frame_index = faiss.IndexFlatL2(features_array.shape[1])
|
179 |
-
self.frame_index.add(features_array)
|
180 |
|
181 |
-
self.logger.info("
|
|
|
182 |
|
183 |
except Exception as e:
|
184 |
-
self.logger.error(f"
|
185 |
-
|
186 |
|
187 |
@torch.no_grad()
|
188 |
-
def
|
189 |
-
"""
|
190 |
try:
|
191 |
-
# Process query
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
196 |
distances, indices = self.frame_index.search(
|
197 |
-
|
198 |
k
|
199 |
)
|
200 |
-
|
201 |
-
# Prepare results
|
202 |
results = []
|
203 |
for distance, idx in zip(distances[0], indices[0]):
|
204 |
frame_info = self.frame_data[idx].copy()
|
205 |
-
|
206 |
-
# Add relevance score
|
207 |
-
frame_info['relevance_score'] = float(1 / (1 + distance))
|
208 |
-
|
209 |
-
# Add object summary
|
210 |
-
obj_summary = ", ".join(obj["label"] for obj in frame_info['objects'][:3])
|
211 |
-
if obj_summary:
|
212 |
-
frame_info['object_summary'] = f"Objects detected: {obj_summary}"
|
213 |
-
|
214 |
results.append(frame_info)
|
215 |
-
|
216 |
return results
|
217 |
-
|
218 |
except Exception as e:
|
219 |
-
self.logger.error(f"
|
220 |
-
|
221 |
|
222 |
-
class
|
223 |
def __init__(self):
|
224 |
-
self.
|
225 |
-
self.
|
226 |
self.processed = False
|
227 |
-
self.temp_dir = tempfile.mkdtemp()
|
228 |
-
|
229 |
-
def __del__(self):
|
230 |
-
if hasattr(self, 'temp_dir') and os.path.exists(self.temp_dir):
|
231 |
-
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
232 |
|
233 |
def process_video(self, video_file):
|
234 |
-
"""
|
235 |
try:
|
236 |
if video_file is None:
|
237 |
return "Please upload a video first.", gr.Progress(0)
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
shutil.copy2(video_path, temp_video_path)
|
242 |
-
|
243 |
-
self.current_video_path = temp_video_path
|
244 |
-
self.analyzer.process_video(self.current_video_path)
|
245 |
-
self.processed = True
|
246 |
-
|
247 |
-
return "Video processed successfully! You can now ask questions about the video.", gr.Progress(100)
|
248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
except Exception as e:
|
250 |
self.processed = False
|
251 |
-
return f"Error
|
252 |
|
253 |
-
def
|
254 |
-
"""
|
255 |
if not self.processed:
|
256 |
return None, "Please process a video first."
|
257 |
-
|
258 |
try:
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
frames = []
|
261 |
descriptions = []
|
262 |
-
|
263 |
-
cap = cv2.VideoCapture(self.current_video_path)
|
264 |
-
|
265 |
for result in results:
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
description += f"Relevance Score: {result['relevance_score']:.2f}"
|
279 |
-
descriptions.append(description)
|
280 |
-
|
281 |
-
cap.release()
|
282 |
-
|
283 |
-
combined_description = "\n\nScene Analysis:\n\n"
|
284 |
for i, desc in enumerate(descriptions, 1):
|
285 |
-
|
286 |
-
|
287 |
-
return frames,
|
288 |
-
|
289 |
except Exception as e:
|
290 |
-
return None, f"Error
|
291 |
|
292 |
def create_interface(self):
|
293 |
"""Create Gradio interface"""
|
294 |
-
with gr.Blocks(title="Video Question Answering") as interface:
|
295 |
gr.Markdown("# Advanced Video Question Answering")
|
296 |
gr.Markdown("Upload a video and ask questions about any aspect of its content!")
|
297 |
|
298 |
with gr.Row():
|
299 |
video_input = gr.File(
|
300 |
-
label="Upload Video
|
301 |
file_types=["video"],
|
302 |
)
|
303 |
process_button = gr.Button("Process Video")
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
)
|
310 |
-
progress = gr.Progress()
|
311 |
|
312 |
with gr.Row():
|
313 |
query_input = gr.Textbox(
|
314 |
-
label="Ask
|
315 |
placeholder="What's happening in the video?"
|
316 |
)
|
317 |
query_button = gr.Button("Search")
|
@@ -319,7 +270,6 @@ class VideoQAApp:
|
|
319 |
gallery = gr.Gallery(
|
320 |
label="Retrieved Frames",
|
321 |
show_label=True,
|
322 |
-
elem_id="gallery",
|
323 |
columns=[2],
|
324 |
rows=[2],
|
325 |
height="auto"
|
@@ -334,11 +284,11 @@ class VideoQAApp:
|
|
334 |
process_button.click(
|
335 |
fn=self.process_video,
|
336 |
inputs=[video_input],
|
337 |
-
outputs=[status_output
|
338 |
)
|
339 |
|
340 |
query_button.click(
|
341 |
-
fn=self.
|
342 |
inputs=[query_input],
|
343 |
outputs=[gallery, descriptions]
|
344 |
)
|
@@ -346,7 +296,7 @@ class VideoQAApp:
|
|
346 |
return interface
|
347 |
|
348 |
# Initialize and create the interface
|
349 |
-
app =
|
350 |
interface = app.create_interface()
|
351 |
|
352 |
# Launch the app
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
+
from transformers import CLIPProcessor, CLIPModel, Blip2Processor, Blip2ForConditionalGeneration
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import faiss
|
|
|
11 |
import os
|
12 |
import shutil
|
13 |
from tqdm import tqdm
|
14 |
+
from pathlib import Path
|
15 |
+
from moviepy.video.io.VideoFileClip import VideoFileClip
|
16 |
|
17 |
+
class VideoRAGSystem:
|
18 |
def __init__(self):
|
19 |
self.logger = self.setup_logger()
|
20 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
self.logger.info(f"Using device: {self.device}")
|
22 |
|
23 |
+
# Initialize models
|
24 |
+
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
|
25 |
+
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
26 |
+
|
27 |
+
self.blip_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
28 |
+
self.blip_model = Blip2ForConditionalGeneration.from_pretrained(
|
29 |
+
"Salesforce/blip2-opt-2.7b",
|
|
|
|
|
|
|
30 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
31 |
).to(self.device)
|
32 |
|
33 |
+
# Vector store setup
|
|
|
|
|
|
|
|
|
34 |
self.frame_index = None
|
35 |
self.frame_data = []
|
36 |
+
self.target_size = (224, 224)
|
|
|
37 |
|
38 |
+
# Create directories for storing processed data
|
39 |
+
self.temp_dir = tempfile.mkdtemp()
|
40 |
+
self.frames_dir = os.path.join(self.temp_dir, "frames")
|
41 |
+
os.makedirs(self.frames_dir, exist_ok=True)
|
42 |
|
43 |
def setup_logger(self) -> logging.Logger:
|
44 |
+
logger = logging.getLogger('VideoRAGSystem')
|
45 |
if logger.handlers:
|
46 |
logger.handlers.clear()
|
47 |
logger.setLevel(logging.INFO)
|
|
|
51 |
logger.addHandler(handler)
|
52 |
return logger
|
53 |
|
54 |
+
def split_video(self, video_path: str, timestamp_ms: int, context_seconds: int = 3) -> str:
|
55 |
+
"""Extract a clip around the specified timestamp"""
|
56 |
+
timestamp_sec = timestamp_ms / 1000
|
57 |
+
output_path = os.path.join(self.temp_dir, "clip.mp4")
|
58 |
+
|
59 |
+
with VideoFileClip(video_path) as video:
|
60 |
+
duration = video.duration
|
61 |
+
start_time = max(timestamp_sec - context_seconds, 0)
|
62 |
+
end_time = min(timestamp_sec + context_seconds, duration)
|
63 |
+
clip = video.subclip(start_time, end_time)
|
64 |
+
clip.write_videofile(output_path, audio_codec='aac')
|
65 |
+
|
66 |
+
return output_path
|
67 |
+
|
68 |
@torch.no_grad()
|
69 |
def analyze_frame(self, image: Image.Image) -> Dict:
|
70 |
"""Comprehensive frame analysis"""
|
71 |
try:
|
72 |
+
# Generate caption
|
73 |
+
inputs = self.blip_processor(image, return_tensors="pt").to(self.device)
|
74 |
+
if self.device.type == "cuda":
|
75 |
+
inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in inputs.items()}
|
76 |
+
caption = self.blip_model.generate(**inputs, max_length=50)
|
77 |
+
caption_text = self.blip_processor.decode(caption[0], skip_special_tokens=True)
|
78 |
+
|
79 |
+
# Get visual features
|
80 |
+
clip_inputs = self.clip_processor(images=image, return_tensors="pt").to(self.device)
|
81 |
+
if self.device.type == "cuda":
|
82 |
+
clip_inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in clip_inputs.items()}
|
83 |
+
features = self.clip_model.get_image_features(**clip_inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
return {
|
86 |
"caption": caption_text,
|
87 |
+
"features": features.cpu().numpy()
|
88 |
}
|
|
|
89 |
except Exception as e:
|
90 |
+
self.logger.error(f"Frame analysis error: {str(e)}")
|
91 |
+
return None
|
92 |
|
93 |
+
def extract_keyframes(self, video_path: str, max_frames: int = 15) -> List[Dict]:
|
94 |
+
"""Extract and analyze key frames"""
|
95 |
cap = cv2.VideoCapture(video_path)
|
96 |
+
frames_info = []
|
97 |
+
frame_count = 0
|
98 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
99 |
+
interval = max(1, total_frames // max_frames)
|
100 |
+
|
101 |
+
with tqdm(total=max_frames, desc="Analyzing frames") as pbar:
|
102 |
+
while len(frames_info) < max_frames and cap.isOpened():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
ret, frame = cap.read()
|
104 |
if not ret:
|
105 |
break
|
106 |
+
|
107 |
+
if frame_count % interval == 0:
|
108 |
+
# Save frame
|
109 |
+
frame_path = os.path.join(self.frames_dir, f"frame_{frame_count}.jpg")
|
110 |
+
cv2.imwrite(frame_path, frame)
|
111 |
|
112 |
+
# Analyze frame
|
113 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
114 |
+
image = Image.fromarray(frame_rgb).resize(self.target_size, Image.LANCZOS)
|
115 |
+
analysis = self.analyze_frame(image)
|
|
|
|
|
|
|
116 |
|
117 |
+
if analysis is not None:
|
118 |
+
frames_info.append({
|
119 |
+
"frame_number": frame_count,
|
120 |
+
"timestamp": frame_count / cap.get(cv2.CAP_PROP_FPS),
|
121 |
+
"path": frame_path,
|
122 |
+
"caption": analysis["caption"],
|
123 |
+
"features": analysis["features"]
|
124 |
+
})
|
125 |
+
pbar.update(1)
|
126 |
+
|
127 |
+
frame_count += 1
|
128 |
+
|
129 |
cap.release()
|
130 |
+
return frames_info
|
131 |
|
132 |
+
def process_video(self, video_path: str):
|
133 |
+
"""Process video and build search index"""
|
|
|
134 |
self.logger.info(f"Processing video: {video_path}")
|
|
|
|
|
135 |
|
136 |
try:
|
137 |
+
# Extract and analyze frames
|
138 |
+
frames_info = self.extract_keyframes(video_path)
|
139 |
+
self.frame_data = frames_info
|
140 |
+
|
141 |
+
# Build FAISS index
|
142 |
+
if frames_info:
|
143 |
+
features = np.vstack([frame["features"] for frame in frames_info])
|
144 |
+
self.frame_index = faiss.IndexFlatL2(features.shape[1])
|
145 |
+
self.frame_index.add(features)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
self.logger.info(f"Processed {len(frames_info)} frames successfully")
|
148 |
+
return True
|
149 |
|
150 |
except Exception as e:
|
151 |
+
self.logger.error(f"Video processing error: {str(e)}")
|
152 |
+
return False
|
153 |
|
154 |
@torch.no_grad()
|
155 |
+
def search_frames(self, query: str, k: int = 4) -> List[Dict]:
|
156 |
+
"""Search for relevant frames based on the query"""
|
157 |
try:
|
158 |
+
# Process query
|
159 |
+
inputs = self.clip_processor(text=[query], return_tensors="pt").to(self.device)
|
160 |
+
if self.device.type == "cuda":
|
161 |
+
inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in inputs.items()}
|
162 |
+
query_features = self.clip_model.get_text_features(**inputs)
|
163 |
+
|
164 |
+
# Search
|
165 |
distances, indices = self.frame_index.search(
|
166 |
+
query_features.cpu().numpy(),
|
167 |
k
|
168 |
)
|
169 |
+
|
170 |
+
# Prepare results
|
171 |
results = []
|
172 |
for distance, idx in zip(distances[0], indices[0]):
|
173 |
frame_info = self.frame_data[idx].copy()
|
174 |
+
frame_info["relevance"] = float(1 / (1 + distance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
results.append(frame_info)
|
176 |
+
|
177 |
return results
|
178 |
+
|
179 |
except Exception as e:
|
180 |
+
self.logger.error(f"Search error: {str(e)}")
|
181 |
+
return []
|
182 |
|
183 |
+
class VideoQAInterface:
|
184 |
def __init__(self):
|
185 |
+
self.rag_system = VideoRAGSystem()
|
186 |
+
self.current_video = None
|
187 |
self.processed = False
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
def process_video(self, video_file):
|
190 |
+
"""Handle video upload and processing"""
|
191 |
try:
|
192 |
if video_file is None:
|
193 |
return "Please upload a video first.", gr.Progress(0)
|
194 |
|
195 |
+
self.current_video = video_file.name
|
196 |
+
success = self.rag_system.process_video(self.current_video)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
if success:
|
199 |
+
self.processed = True
|
200 |
+
return "Video processed successfully! You can now ask questions.", gr.Progress(100)
|
201 |
+
else:
|
202 |
+
return "Error processing video. Please try again.", gr.Progress(0)
|
203 |
+
|
204 |
except Exception as e:
|
205 |
self.processed = False
|
206 |
+
return f"Error: {str(e)}", gr.Progress(0)
|
207 |
|
208 |
+
def answer_question(self, query):
|
209 |
+
"""Handle question answering"""
|
210 |
if not self.processed:
|
211 |
return None, "Please process a video first."
|
212 |
+
|
213 |
try:
|
214 |
+
# Search for relevant frames
|
215 |
+
results = self.rag_system.search_frames(query)
|
216 |
+
|
217 |
+
if not results:
|
218 |
+
return None, "No relevant frames found."
|
219 |
+
|
220 |
+
# Prepare output
|
221 |
frames = []
|
222 |
descriptions = []
|
223 |
+
|
|
|
|
|
224 |
for result in results:
|
225 |
+
# Load frame
|
226 |
+
frame = Image.open(result["path"])
|
227 |
+
frames.append(frame)
|
228 |
|
229 |
+
# Prepare description
|
230 |
+
desc = f"Timestamp: {result['timestamp']:.2f}s\n"
|
231 |
+
desc += f"Scene Description: {result['caption']}\n"
|
232 |
+
desc += f"Relevance Score: {result['relevance']:.2f}"
|
233 |
+
descriptions.append(desc)
|
234 |
+
|
235 |
+
# Combine descriptions
|
236 |
+
combined_desc = "\n\nFrame Analysis:\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
for i, desc in enumerate(descriptions, 1):
|
238 |
+
combined_desc += f"Frame {i}:\n{desc}\n\n"
|
239 |
+
|
240 |
+
return frames, combined_desc
|
241 |
+
|
242 |
except Exception as e:
|
243 |
+
return None, f"Error: {str(e)}"
|
244 |
|
245 |
def create_interface(self):
|
246 |
"""Create Gradio interface"""
|
247 |
+
with gr.Blocks(title="Advanced Video Question Answering") as interface:
|
248 |
gr.Markdown("# Advanced Video Question Answering")
|
249 |
gr.Markdown("Upload a video and ask questions about any aspect of its content!")
|
250 |
|
251 |
with gr.Row():
|
252 |
video_input = gr.File(
|
253 |
+
label="Upload Video",
|
254 |
file_types=["video"],
|
255 |
)
|
256 |
process_button = gr.Button("Process Video")
|
257 |
|
258 |
+
status_output = gr.Textbox(
|
259 |
+
label="Status",
|
260 |
+
interactive=False
|
261 |
+
)
|
|
|
|
|
262 |
|
263 |
with gr.Row():
|
264 |
query_input = gr.Textbox(
|
265 |
+
label="Ask about the video",
|
266 |
placeholder="What's happening in the video?"
|
267 |
)
|
268 |
query_button = gr.Button("Search")
|
|
|
270 |
gallery = gr.Gallery(
|
271 |
label="Retrieved Frames",
|
272 |
show_label=True,
|
|
|
273 |
columns=[2],
|
274 |
rows=[2],
|
275 |
height="auto"
|
|
|
284 |
process_button.click(
|
285 |
fn=self.process_video,
|
286 |
inputs=[video_input],
|
287 |
+
outputs=[status_output]
|
288 |
)
|
289 |
|
290 |
query_button.click(
|
291 |
+
fn=self.answer_question,
|
292 |
inputs=[query_input],
|
293 |
outputs=[gallery, descriptions]
|
294 |
)
|
|
|
296 |
return interface
|
297 |
|
298 |
# Initialize and create the interface
|
299 |
+
app = VideoQAInterface()
|
300 |
interface = app.create_interface()
|
301 |
|
302 |
# Launch the app
|