Spaces:
Runtime error
Runtime error
File size: 10,072 Bytes
58d8c29 1f73bb6 f272cc4 145deff 731d628 ead70d9 372b939 ead70d9 372b939 ead70d9 372b939 ead70d9 372b939 ead70d9 1f73bb6 ead70d9 5f2c2db ead70d9 372b939 ead70d9 abb2057 372b939 ead70d9 58d8c29 ead70d9 5f2c2db ead70d9 1f73bb6 58d8c29 b62d049 58d8c29 b7a2ed4 58d8c29 b7a2ed4 58d8c29 b7a2ed4 58d8c29 b7a2ed4 b62d049 58d8c29 372b939 58d8c29 2f28cd4 58d8c29 2f28cd4 58d8c29 2f28cd4 58d8c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
from typing import Dict, Tuple
from uuid import UUID
import altair as alt
import argilla as rg
from argilla.feedback import FeedbackDataset
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
import gradio as gr
import pandas as pd
def obtain_source_target_datasets() -> (
Tuple[
FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
]
):
"""
This function returns the source and target datasets to be used in the application.
Returns:
A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.
"""
# Obtain the public dataset and see how many pending records are there
source_dataset = rg.FeedbackDataset.from_argilla(
os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
)
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
# Obtain a list of users from the private workspace
target_dataset = rg.FeedbackDataset.from_argilla(
os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
)
return filtered_source_dataset, target_dataset
def get_user_annotations_dictionary(
dataset: FeedbackDataset | RemoteFeedbackDataset,
) -> Dict[str, int]:
"""
This function returns a dictionary with the username as the key and the number of annotations as the value.
Args:
dataset: The dataset to be analyzed.
Returns:
A dictionary with the username as the key and the number of annotations as the value.
"""
output = {}
for record in dataset:
for response in record.responses:
if str(response.user_id) not in output.keys():
output[str(response.user_id)] = 1
else:
output[str(response.user_id)] += 1
# Changing the name of the keys, from the id to the username
for key in list(output.keys()):
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
return output
def gauge_chart() -> alt.Chart:
# Assuming obtain_source_target_datasets() returns a tuple where the first item is the dataset
source_dataset, _ = obtain_source_target_datasets()
total_records = int(os.getenv("TARGET_RECORDS")) # This should be the total number of records you want to annotate.
annotated_records = len(source_dataset) # This is the number of records already annotated.
pending_records = total_records - annotated_records # Calculate the pending records.
# Prepare data for the gauge chart
gauge_data = pd.DataFrame({
'category': ['Annotated', 'Remaining'],
'value': [annotated_records, pending_records]
})
# The background of the gauge
base = alt.Chart(pd.DataFrame({'value': [total_records], 'category': ['Total']})).mark_bar(
color='#e0e0e0', size=40
).encode(
alt.X('value:Q', scale=alt.Scale(domain=[0, total_records]), title='Record Count'),
alt.Y('category:N', axis=alt.Axis(title=''))
)
# The value part of the gauge
value_bar = alt.Chart(gauge_data).mark_bar(size=40).encode(
alt.X('value:Q'),
alt.Y('category:N', axis=alt.Axis(title='')),
alt.Color('category:N', scale=alt.Scale(domain=['Annotated', 'Remaining'], range=['#28a745', '#dcdcdc']))
)
# Combine the bars to create a gauge effect
chart = alt.layer(base, value_bar).properties(
title='Progress Towards Goal',
width=700,
height=100
)
# Add a text label for the current value
text = alt.Chart(pd.DataFrame({'value': [annotated_records + pending_records/2], 'text': [f'{annotated_records} / {total_records}']})).mark_text(
align='center', baseline='middle', fontSize=16, fontWeight='bold', dy=-30
).encode(
x='value:Q',
text='text:N'
)
return (chart + text)
import altair as alt
import pandas as pd
import os
def progress_bar_chart() -> alt.Chart:
# Load your data
source_dataset, _ = obtain_source_target_datasets()
total_records = int(os.getenv("TARGET_RECORDS"))
annotated_records = len(source_dataset)
percentage_complete = annotated_records / total_records * 100
# Define the data for the bars
progress_data = pd.DataFrame({
'category': ['Completed', 'Pending'],
'value': [annotated_records, total_records - annotated_records]
})
# Base chart for the progress
base = alt.Chart(progress_data).encode(
alt.X('value:Q', scale=alt.Scale(domain=[0, total_records]), title='Number of Records'),
alt.Y('category:N', title='')
)
# Colored bar for completion
bar = base.mark_bar(size=50, color='#28a745').transform_filter(
alt.datum.category == 'Completed'
)
# Gray bar for pending
background = base.mark_bar(size=50, color='#dcdcdc').transform_filter(
alt.datum.category == 'Pending'
)
# Text for the completed records
text = base.mark_text(align='left', dx=3, dy=0, fontSize=16, fontWeight='bold', color='black').encode(
text='value:Q'
).transform_filter(
alt.datum.category == 'Completed'
)
# Combine the charts
chart = alt.layer(background, bar, text).resolve_scale(y='independent').properties(
width=700,
height=400,
title='Progress Towards Goal'
).configure_view(
strokeWidth=0
).configure_axis(
grid=False
)
return chart
def donut_chart() -> alt.Chart:
"""
This function returns a donut chart with the number of annotated and pending records.
Returns:
An altair chart with the donut chart.
"""
source_dataset, _ = obtain_source_target_datasets()
annotated_records = len(source_dataset)
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": ["Submitted", "Pending"], # Add a new column for categories
}
)
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
chart = c1 + c2
return chart
def kpi_chart() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of annotators.
Returns:
An altair chart with the KPI chart.
"""
# Obtain the total amount of annotators
_, target_dataset = obtain_source_target_datasets()
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
total_annotators = len(user_ids_annotations)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": ["Total Contributors"], "Value": [total_annotators]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Number of Contributors", width=250, height=200)
)
return chart
def obtain_top_5_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame:
"""
This function returns the top 5 users with the most annotations.
Args:
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
Returns:
A pandas dataframe with the top 5 users with the most annotations.
"""
dataframe = pd.DataFrame(
user_ids_annotations.items(), columns=["Name", "Submitted Responses"]
)
dataframe = dataframe.sort_values(by="Submitted Responses", ascending=False)
return dataframe.head(10)
def main() -> None:
# Connect to the space with rg.init()
rg.init(
api_url=os.getenv("ARGILLA_API_URL"),
api_key=os.getenv("ARGILLA_API_KEY"),
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
)
source_dataset, target_dataset = obtain_source_target_datasets()
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
top5_dataframe = obtain_top_5_users(user_ids_annotations)
with gr.Blocks() as demo:
gr.Markdown(
"""
# π£οΈ The Prompt Collective Dashboad
This Gradio dashboard shows the progress of the first "Data is Better Together" initiative to understand and collect good quality and diverse prompt for the OSS AI community.
If you want to contribute to OSS AI, join [the Prompt Collective HF Space](https://huggingface.co/spaces/DIBT/prompt-collective).
"""
)
gr.Markdown(
"""
## π Contributors Progress
How many records have been submitted, how many are still pending?
"""
)
plot = gr.Plot(label="Plot")
demo.load(
progress_bar_chart,
inputs=[],
outputs=[plot],
)
gr.Markdown(
"""
## πΎ Contributors Hall of Fame
The number of all contributors and the top 10 contributors:
"""
)
with gr.Row():
plot2 = gr.Plot(label="Plot")
demo.load(
kpi_chart,
inputs=[],
outputs=[plot2],
)
gr.Dataframe(
value=top5_dataframe,
headers=["Name", "Submitted Responses"],
datatype=[
"str",
"number",
],
row_count=10,
col_count=(2, "fixed"),
interactive=False,
),
# Launch the Gradio interface
demo.launch()
if __name__ == "__main__":
main()
|