Spaces:
Runtime error
Runtime error
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, Tuple
|
3 |
+
from uuid import UUID
|
4 |
+
|
5 |
+
import altair as alt
|
6 |
+
import argilla as rg
|
7 |
+
from argilla.feedback import FeedbackDataset
|
8 |
+
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
|
9 |
+
import gradio as gr
|
10 |
+
import pandas as pd
|
11 |
+
|
12 |
+
|
13 |
+
def obtain_source_target_datasets() -> (
|
14 |
+
Tuple[
|
15 |
+
FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
|
16 |
+
]
|
17 |
+
):
|
18 |
+
"""
|
19 |
+
This function returns the source and target datasets to be used in the application.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.
|
23 |
+
|
24 |
+
"""
|
25 |
+
|
26 |
+
# Obtain the public dataset and see how many pending records are there
|
27 |
+
source_dataset = rg.FeedbackDataset.from_argilla(
|
28 |
+
os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
|
29 |
+
)
|
30 |
+
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
|
31 |
+
|
32 |
+
# Obtain a list of users from the private workspace
|
33 |
+
target_dataset = rg.FeedbackDataset.from_argilla(
|
34 |
+
os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
|
35 |
+
)
|
36 |
+
|
37 |
+
return filtered_source_dataset, target_dataset
|
38 |
+
|
39 |
+
|
40 |
+
def get_user_annotations_dictionary(
|
41 |
+
dataset: FeedbackDataset | RemoteFeedbackDataset,
|
42 |
+
) -> Dict[str, int]:
|
43 |
+
"""
|
44 |
+
This function returns a dictionary with the username as the key and the number of annotations as the value.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
dataset: The dataset to be analyzed.
|
48 |
+
Returns:
|
49 |
+
A dictionary with the username as the key and the number of annotations as the value.
|
50 |
+
"""
|
51 |
+
output = {}
|
52 |
+
for record in dataset:
|
53 |
+
for response in record.responses:
|
54 |
+
if str(response.user_id) not in output.keys():
|
55 |
+
output[str(response.user_id)] = 1
|
56 |
+
else:
|
57 |
+
output[str(response.user_id)] += 1
|
58 |
+
|
59 |
+
# Changing the name of the keys, from the id to the username
|
60 |
+
for key in list(output.keys()):
|
61 |
+
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
|
62 |
+
|
63 |
+
return output
|
64 |
+
|
65 |
+
|
66 |
+
def donut_chart() -> alt.Chart:
|
67 |
+
"""
|
68 |
+
This function returns a donut chart with the number of annotated and pending records.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
An altair chart with the donut chart.
|
72 |
+
"""
|
73 |
+
|
74 |
+
source_dataset, _ = obtain_source_target_datasets()
|
75 |
+
annotated_records = len(source_dataset)
|
76 |
+
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
|
77 |
+
|
78 |
+
source = pd.DataFrame(
|
79 |
+
{
|
80 |
+
"values": [annotated_records, pending_records],
|
81 |
+
"category": ["Annotated", "Pending"], # Add a new column for categories
|
82 |
+
}
|
83 |
+
)
|
84 |
+
|
85 |
+
base = alt.Chart(source).encode(
|
86 |
+
theta=alt.Theta("values:Q", stack=True),
|
87 |
+
radius=alt.Radius(
|
88 |
+
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
|
89 |
+
),
|
90 |
+
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
|
91 |
+
)
|
92 |
+
|
93 |
+
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
|
94 |
+
|
95 |
+
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
|
96 |
+
|
97 |
+
chart = c1 + c2
|
98 |
+
|
99 |
+
return chart
|
100 |
+
|
101 |
+
|
102 |
+
def kpi_chart() -> alt.Chart:
|
103 |
+
"""
|
104 |
+
This function returns a KPI chart with the total amount of annotators.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
An altair chart with the KPI chart.
|
108 |
+
"""
|
109 |
+
|
110 |
+
# Obtain the total amount of annotators
|
111 |
+
_, target_dataset = obtain_source_target_datasets()
|
112 |
+
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
|
113 |
+
total_annotators = len(user_ids_annotations)
|
114 |
+
|
115 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
116 |
+
data = pd.DataFrame({"Category": ["Total Annotators"], "Value": [total_annotators]})
|
117 |
+
|
118 |
+
# Create Altair chart
|
119 |
+
chart = (
|
120 |
+
alt.Chart(data)
|
121 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
122 |
+
.encode(text="Value:N")
|
123 |
+
.properties(title="Number of Annotators", width=250, height=200)
|
124 |
+
)
|
125 |
+
|
126 |
+
return chart
|
127 |
+
|
128 |
+
|
129 |
+
def obtain_top_5_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame:
|
130 |
+
"""
|
131 |
+
This function returns the top 5 users with the most annotations.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
A pandas dataframe with the top 5 users with the most annotations.
|
138 |
+
"""
|
139 |
+
|
140 |
+
dataframe = pd.DataFrame(
|
141 |
+
user_ids_annotations.items(), columns=["Name", "Annotated Records"]
|
142 |
+
)
|
143 |
+
dataframe = dataframe.sort_values(by="Annotated Records", ascending=False)
|
144 |
+
return dataframe.head(5)
|
145 |
+
|
146 |
+
|
147 |
+
def main() -> None:
|
148 |
+
|
149 |
+
# Connect to the space with rg.init()
|
150 |
+
rg.init(
|
151 |
+
api_url=os.getenv("ARGILLA_API_URL"),
|
152 |
+
api_key=os.getenv("ARGILLA_API_KEY"),
|
153 |
+
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
|
154 |
+
)
|
155 |
+
|
156 |
+
source_dataset, target_dataset = obtain_source_target_datasets()
|
157 |
+
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
|
158 |
+
|
159 |
+
top5_dataframe = obtain_top_5_users(user_ids_annotations)
|
160 |
+
|
161 |
+
with gr.Blocks() as demo:
|
162 |
+
gr.Markdown(
|
163 |
+
"""
|
164 |
+
# π£οΈ The Prompt Collective Dashboad
|
165 |
+
|
166 |
+
This Gradio dashboard shows the progress of the first "Data is Better Together" initiative to understand and collect good quality and diverse prompt for the OSS AI community.
|
167 |
+
If you want to contribute to OSS AI, join [the Prompt Collective HF Space](https://huggingface.co/spaces/DIBT/prompt-collective).
|
168 |
+
"""
|
169 |
+
)
|
170 |
+
gr.Markdown(
|
171 |
+
"""
|
172 |
+
## π Contributors Progress
|
173 |
+
|
174 |
+
How many records have been submitted, how many are still pending?
|
175 |
+
"""
|
176 |
+
)
|
177 |
+
plot = gr.Plot(label="Plot")
|
178 |
+
demo.load(
|
179 |
+
donut_chart,
|
180 |
+
inputs=[],
|
181 |
+
outputs=[plot],
|
182 |
+
)
|
183 |
+
|
184 |
+
gr.Markdown(
|
185 |
+
"""
|
186 |
+
## πΎ Contributors Hall of Fame
|
187 |
+
The number of all annotators and the top 5 users with the most responses are:
|
188 |
+
"""
|
189 |
+
)
|
190 |
+
|
191 |
+
with gr.Row():
|
192 |
+
|
193 |
+
plot2 = gr.Plot(label="Plot")
|
194 |
+
demo.load(
|
195 |
+
kpi_chart,
|
196 |
+
inputs=[],
|
197 |
+
outputs=[plot2],
|
198 |
+
)
|
199 |
+
|
200 |
+
gr.Dataframe(
|
201 |
+
value=top5_dataframe,
|
202 |
+
headers=["Name", "Annotated Records"],
|
203 |
+
datatype=[
|
204 |
+
"str",
|
205 |
+
"number",
|
206 |
+
],
|
207 |
+
row_count=5,
|
208 |
+
col_count=(2, "fixed"),
|
209 |
+
interactive=False,
|
210 |
+
),
|
211 |
+
|
212 |
+
# Launch the Gradio interface
|
213 |
+
demo.launch()
|
214 |
+
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
main()
|