File size: 8,669 Bytes
58d8c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb119f
 
 
efeda97
2bb119f
58d8c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d89a48
bead680
f45ec7c
 
 
4c07517
f45ec7c
bead680
 
 
 
 
 
2d89a48
58d8c29
c9fdcf2
 
 
 
 
58d8c29
 
c9fdcf2
2d89a48
c9fdcf2
58d8c29
c9fdcf2
58d8c29
aa75803
58d8c29
ed6456c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d8c29
393821f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d89a48
bead680
58d8c29
 
 
 
 
 
 
 
 
 
 
 
 
 
b7a2ed4
58d8c29
 
 
 
 
 
b7a2ed4
58d8c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7a2ed4
58d8c29
b7a2ed4
b62d049
58d8c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d2851f
 
dc57185
3d2851f
 
58d8c29
 
 
 
 
 
 
 
 
 
3d2851f
4106c01
03af56b
58d8c29
 
393821f
 
 
 
 
 
 
 
 
ed6456c
 
 
 
 
 
 
 
393821f
 
ed6456c
393821f
 
 
 
58d8c29
 
 
 
2f28cd4
58d8c29
 
 
 
 
 
 
 
 
 
 
 
 
 
2f28cd4
58d8c29
 
 
 
2f28cd4
58d8c29
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
from typing import Dict, Tuple
from uuid import UUID

import altair as alt
import argilla as rg
from argilla.feedback import FeedbackDataset
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
import gradio as gr
import pandas as pd


def obtain_source_target_datasets() -> (
    Tuple[
        FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
    ]
):
    """
    This function returns the source and target datasets to be used in the application.

    Returns:
        A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.

    """

    # Obtain the public dataset and see how many pending records are there
    source_dataset = rg.FeedbackDataset.from_argilla(
        os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
    )
    filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])

    # Obtain a list of users from the private workspace
    #target_dataset = rg.FeedbackDataset.from_argilla(
    #    os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
    #)
    
    target_dataset = source_dataset.filter_by(response_status=["submitted"])

    return filtered_source_dataset, target_dataset


def get_user_annotations_dictionary(
    dataset: FeedbackDataset | RemoteFeedbackDataset,
) -> Dict[str, int]:
    """
    This function returns a dictionary with the username as the key and the number of annotations as the value.

    Args:
        dataset: The dataset to be analyzed.
    Returns:
        A dictionary with the username as the key and the number of annotations as the value.
    """
    output = {}
    for record in dataset:
        for response in record.responses:
            if str(response.user_id) not in output.keys():
                output[str(response.user_id)] = 1
            else:
                output[str(response.user_id)] += 1

    # Changing the name of the keys, from the id to the username
    for key in list(output.keys()):
        output[rg.User.from_id(UUID(key)).username] = output.pop(key)

    return output

def donut_chart() -> alt.Chart:
    # Load your data
    source_dataset, results = obtain_source_target_datasets()
    pending_records = len(source_dataset)
    annotated_records = len(results)
    print(annotated_records)

    # Prepare data for the donut chart
    source = pd.DataFrame({
        "values": [annotated_records, pending_records],
        "category": ["Completed", "Remaining"],
        "colors": ["#4CAF50", "#757575"]  # Green for Completed, Grey for Remaining
    })

    base = alt.Chart(source).encode(
        theta=alt.Theta("values:Q", stack=True),
        radius=alt.Radius(
            "values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
        ),
        color=alt.Color("category:N", legend=alt.Legend(title="Category")),
    )

    c1 = base.mark_arc(innerRadius=20, stroke="#fff")

    c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")

    chart = c1 + c2

    return chart

def kpi_chart_remaining() -> alt.Chart:
    """
    This function returns a KPI chart with the total amount of annotators.
    Returns:
        An altair chart with the KPI chart.
    """

    source_dataset, results = obtain_source_target_datasets()
    pending_records = len(source_dataset)

    # Assuming you have a DataFrame with user data, create a sample DataFrame
    data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})

    # Create Altair chart
    chart = (
        alt.Chart(data)
        .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
        .encode(text="Value:N")
        .properties(title="Total remaining", width=250, height=200)
    )

    return chart

def kpi_chart_submitted() -> alt.Chart:
    """
    This function returns a KPI chart with the total amount of annotators.
    Returns:
        An altair chart with the KPI chart.
    """

    # Obtain the total amount of annotators
    _, target_dataset = obtain_source_target_datasets()

    total = len(target_dataset)

    # Assuming you have a DataFrame with user data, create a sample DataFrame
    data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})

    # Create Altair chart
    chart = (
        alt.Chart(data)
        .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
        .encode(text="Value:N")
        .properties(title="Total completed", width=250, height=200)
    )

    return chart


def kpi_chart() -> alt.Chart:
    """
    This function returns a KPI chart with the total amount of annotators.

    Returns:
        An altair chart with the KPI chart.
    """

    # Obtain the total amount of annotators
    _, target_dataset = obtain_source_target_datasets()
    user_ids_annotations = get_user_annotations_dictionary(target_dataset)
    total_annotators = len(user_ids_annotations)

    # Assuming you have a DataFrame with user data, create a sample DataFrame
    data = pd.DataFrame({"Category": ["Total Contributors"], "Value": [total_annotators]})

    # Create Altair chart
    chart = (
        alt.Chart(data)
        .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
        .encode(text="Value:N")
        .properties(title="Number of Contributors", width=250, height=200)
    )

    return chart


def obtain_top_5_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame:
    """
    This function returns the top 5 users with the most annotations.

    Args:
        user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.

    Returns:
        A pandas dataframe with the top 5 users with the most annotations.
    """

    dataframe = pd.DataFrame(
        user_ids_annotations.items(), columns=["Name", "Submitted Responses"]
    )
    dataframe = dataframe.sort_values(by="Submitted Responses", ascending=False)
    return dataframe.head(10)


def main() -> None:

    # Connect to the space with rg.init()
    rg.init(
        api_url=os.getenv("ARGILLA_API_URL"),
        api_key=os.getenv("ARGILLA_API_KEY"),
        extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
    )

    source_dataset, target_dataset = obtain_source_target_datasets()
    user_ids_annotations = get_user_annotations_dictionary(target_dataset)

    top5_dataframe = obtain_top_5_users(user_ids_annotations)

    annotated = len(target_dataset) 
    remaining = int(os.getenv("TARGET_RECORDS")) - annotated
    percentage_completed = round((annotated / int(os.getenv("TARGET_RECORDS"))) * 100,1)


    with gr.Blocks() as demo:
        gr.Markdown(
            """
            # πŸ—£οΈ The Prompt Collective Dashboad

            This Gradio dashboard shows the progress of the first "Data is Better Together" initiative to understand and collect good quality and diverse prompt for the OSS AI community.
            If you want to contribute to OSS AI, join [the Prompt Collective HF Space](https://huggingface.co/spaces/DIBT/prompt-collective).
            """
        )
        gr.Markdown(
            f"""
            ## πŸš€ Progress
            Here's what the community has achieved so far!
            """
        )
        with gr.Row():

            plot = gr.Plot(label="Plot")
            demo.load(
                kpi_chart_submitted,
                inputs=[],
                outputs=[plot],
            )

            plot = gr.Plot(label="Plot")
            demo.load(
                kpi_chart_remaining,
                inputs=[],
                outputs=[plot],
            )


            plot2 = gr.Plot(label="Plot")
            demo.load(
                donut_chart,
                inputs=[],
                outputs=[plot2],
            )


        gr.Markdown(
            """
            ## πŸ‘Ύ Contributors Hall of Fame
            The number of all contributors and the top 10 contributors:
            """
        )

        with gr.Row():

            plot2 = gr.Plot(label="Plot")
            demo.load(
                kpi_chart,
                inputs=[],
                outputs=[plot2],
            )

            gr.Dataframe(
                value=top5_dataframe,
                headers=["Name", "Submitted Responses"],
                datatype=[
                    "str",
                    "number",
                ],
                row_count=10,
                col_count=(2, "fixed"),
                interactive=False,
            ),

    # Launch the Gradio interface
    demo.launch()


if __name__ == "__main__":
    main()