Spaces:
Running
Running
RoMa: Revisiting Robust Losses for Dense Feature Matching
Project Page (TODO) | Paper
RoMa: Revisiting Robust Lossses for Dense Feature Matching
Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, Michael Felsberg
Arxiv 2023
NOTE!!! Very early code, there might be bugs
The codebase is in the roma folder.
Setup/Install
In your python environment (tested on Linux python 3.10), run:
pip install -e .
Demo / How to Use
We provide two demos in the demos folder. Here's the gist of it:
from roma import roma_outdoor
roma_model = roma_outdoor(device=device)
# Match
warp, certainty = roma_model.match(imA_path, imB_path, device=device)
# Sample matches for estimation
matches, certainty = roma_model.sample(warp, certainty)
# Convert to pixel coordinates (RoMa produces matches in [-1,1]x[-1,1])
kptsA, kptsB = roma_model.to_pixel_coordinates(matches, H_A, W_A, H_B, W_B)
# Find a fundamental matrix (or anything else of interest)
F, mask = cv2.findFundamentalMat(
kptsA.cpu().numpy(), kptsB.cpu().numpy(), ransacReprojThreshold=0.2, method=cv2.USAC_MAGSAC, confidence=0.999999, maxIters=10000
)
Reproducing Results
The experiments in the paper are provided in the experiments folder.
Training
- First follow the instructions provided here: https://github.com/Parskatt/DKM for downloading and preprocessing datasets.
- Run the relevant experiment, e.g.,
torchrun --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d experiments/roma_outdoor.py
Testing
python experiments/roma_outdoor.py --only_test --benchmark mega-1500
License
Due to our dependency on DINOv2, the license is sadly non-commercial only for the moment.
Acknowledgement
Our codebase builds on the code in DKM.
BibTeX
If you find our models useful, please consider citing our paper!
@article{edstedt2023roma,
title={{RoMa}: Revisiting Robust Lossses for Dense Feature Matching},
author={Edstedt, Johan and Sun, Qiyu and Bökman, Georg and Wadenbäck, Mårten and Felsberg, Michael},
journal={arXiv preprint arXiv:2305.15404},
year={2023}
}