Spaces:
Running
Running
![demo](assets/dust3r.jpg) | |
Official implementation of `DUSt3R: Geometric 3D Vision Made Easy` | |
[[Project page](https://dust3r.europe.naverlabs.com/)], [[DUSt3R arxiv](https://arxiv.org/abs/2312.14132)] | |
![Example of reconstruction from two images](assets/pipeline1.jpg) | |
![High level overview of DUSt3R capabilities](assets/dust3r_archi.jpg) | |
```bibtex | |
@inproceedings{dust3r_cvpr24, | |
title={DUSt3R: Geometric 3D Vision Made Easy}, | |
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud}, | |
booktitle = {CVPR}, | |
year = {2024} | |
} | |
@misc{dust3r_arxiv23, | |
title={DUSt3R: Geometric 3D Vision Made Easy}, | |
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud}, | |
year={2023}, | |
eprint={2312.14132}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV} | |
} | |
``` | |
## Table of Contents | |
- [Table of Contents](#table-of-contents) | |
- [License](#license) | |
- [Get Started](#get-started) | |
- [Installation](#installation) | |
- [Checkpoints](#checkpoints) | |
- [Interactive demo](#interactive-demo) | |
- [Interactive demo with docker](#interactive-demo-with-docker) | |
- [Usage](#usage) | |
- [Training](#training) | |
- [Demo](#demo) | |
- [Our Hyperparameters](#our-hyperparameters) | |
## License | |
The code is distributed under the CC BY-NC-SA 4.0 License. | |
See [LICENSE](LICENSE) for more information. | |
```python | |
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
``` | |
## Get Started | |
### Installation | |
1. Clone DUSt3R. | |
```bash | |
git clone --recursive https://github.com/naver/dust3r | |
cd dust3r | |
# if you have already cloned dust3r: | |
# git submodule update --init --recursive | |
``` | |
2. Create the environment, here we show an example using conda. | |
```bash | |
conda create -n dust3r python=3.11 cmake=3.14.0 | |
conda activate dust3r | |
conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia # use the correct version of cuda for your system | |
pip install -r requirements.txt | |
# Optional: you can also install additional packages to: | |
# - add support for HEIC images | |
pip install -r requirements_optional.txt | |
``` | |
3. Optional, compile the cuda kernels for RoPE (as in CroCo v2). | |
```bash | |
# DUST3R relies on RoPE positional embeddings for which you can compile some cuda kernels for faster runtime. | |
cd croco/models/curope/ | |
python setup.py build_ext --inplace | |
cd ../../../ | |
``` | |
### Checkpoints | |
You can obtain the checkpoints by two ways: | |
1) You can use our huggingface_hub integration: the models will be downloaded automatically. | |
2) Otherwise, We provide several pre-trained models: | |
| Modelname | Training resolutions | Head | Encoder | Decoder | | |
|-------------|----------------------|------|---------|---------| | |
| [`DUSt3R_ViTLarge_BaseDecoder_224_linear.pth`](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_224_linear.pth) | 224x224 | Linear | ViT-L | ViT-B | | |
| [`DUSt3R_ViTLarge_BaseDecoder_512_linear.pth`](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_linear.pth) | 512x384, 512x336, 512x288, 512x256, 512x160 | Linear | ViT-L | ViT-B | | |
| [`DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth`](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth) | 512x384, 512x336, 512x288, 512x256, 512x160 | DPT | ViT-L | ViT-B | | |
You can check the hyperparameters we used to train these models in the [section: Our Hyperparameters](#our-hyperparameters) | |
To download a specific model, for example `DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth`: | |
```bash | |
mkdir -p checkpoints/ | |
wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/ | |
``` | |
### Interactive demo | |
In this demo, you should be able run DUSt3R on your machine to reconstruct a scene. | |
First select images that depicts the same scene. | |
You can adjust the global alignment schedule and its number of iterations. | |
> [!NOTE] | |
> If you selected one or two images, the global alignment procedure will be skipped (mode=GlobalAlignerMode.PairViewer) | |
Hit "Run" and wait. | |
When the global alignment ends, the reconstruction appears. | |
Use the slider "min_conf_thr" to show or remove low confidence areas. | |
```bash | |
python3 demo.py --model_name DUSt3R_ViTLarge_BaseDecoder_512_dpt | |
# Use --weights to load a checkpoint from a local file, eg --weights checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth | |
# Use --image_size to select the correct resolution for the selected checkpoint. 512 (default) or 224 | |
# Use --local_network to make it accessible on the local network, or --server_name to specify the url manually | |
# Use --server_port to change the port, by default it will search for an available port starting at 7860 | |
# Use --device to use a different device, by default it's "cuda" | |
``` | |
### Interactive demo with docker | |
To run DUSt3R using Docker, including with NVIDIA CUDA support, follow these instructions: | |
1. **Install Docker**: If not already installed, download and install `docker` and `docker compose` from the [Docker website](https://www.docker.com/get-started). | |
2. **Install NVIDIA Docker Toolkit**: For GPU support, install the NVIDIA Docker toolkit from the [Nvidia website](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html). | |
3. **Build the Docker image and run it**: `cd` into the `./docker` directory and run the following commands: | |
```bash | |
cd docker | |
bash run.sh --with-cuda --model_name="DUSt3R_ViTLarge_BaseDecoder_512_dpt" | |
``` | |
Or if you want to run the demo without CUDA support, run the following command: | |
```bash | |
cd docker | |
bash run.sh --model_name="DUSt3R_ViTLarge_BaseDecoder_512_dpt" | |
``` | |
By default, `demo.py` is lanched with the option `--local_network`. | |
Visit `http://localhost:7860/` to access the web UI (or replace `localhost` with the machine's name to access it from the network). | |
`run.sh` will launch docker-compose using either the [docker-compose-cuda.yml](docker/docker-compose-cuda.yml) or [docker-compose-cpu.ym](docker/docker-compose-cpu.yml) config file, then it starts the demo using [entrypoint.sh](docker/files/entrypoint.sh). | |
![demo](assets/demo.jpg) | |
## Usage | |
```python | |
from dust3r.inference import inference | |
from dust3r.model import AsymmetricCroCo3DStereo | |
from dust3r.utils.image import load_images | |
from dust3r.image_pairs import make_pairs | |
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode | |
if __name__ == '__main__': | |
device = 'cuda' | |
batch_size = 1 | |
schedule = 'cosine' | |
lr = 0.01 | |
niter = 300 | |
model_name = "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt" | |
# you can put the path to a local checkpoint in model_name if needed | |
model = AsymmetricCroCo3DStereo.from_pretrained(model_name).to(device) | |
# load_images can take a list of images or a directory | |
images = load_images(['croco/assets/Chateau1.png', 'croco/assets/Chateau2.png'], size=512) | |
pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True) | |
output = inference(pairs, model, device, batch_size=batch_size) | |
# at this stage, you have the raw dust3r predictions | |
view1, pred1 = output['view1'], output['pred1'] | |
view2, pred2 = output['view2'], output['pred2'] | |
# here, view1, pred1, view2, pred2 are dicts of lists of len(2) | |
# -> because we symmetrize we have (im1, im2) and (im2, im1) pairs | |
# in each view you have: | |
# an integer image identifier: view1['idx'] and view2['idx'] | |
# the img: view1['img'] and view2['img'] | |
# the image shape: view1['true_shape'] and view2['true_shape'] | |
# an instance string output by the dataloader: view1['instance'] and view2['instance'] | |
# pred1 and pred2 contains the confidence values: pred1['conf'] and pred2['conf'] | |
# pred1 contains 3D points for view1['img'] in view1['img'] space: pred1['pts3d'] | |
# pred2 contains 3D points for view2['img'] in view1['img'] space: pred2['pts3d_in_other_view'] | |
# next we'll use the global_aligner to align the predictions | |
# depending on your task, you may be fine with the raw output and not need it | |
# with only two input images, you could use GlobalAlignerMode.PairViewer: it would just convert the output | |
# if using GlobalAlignerMode.PairViewer, no need to run compute_global_alignment | |
scene = global_aligner(output, device=device, mode=GlobalAlignerMode.PointCloudOptimizer) | |
loss = scene.compute_global_alignment(init="mst", niter=niter, schedule=schedule, lr=lr) | |
# retrieve useful values from scene: | |
imgs = scene.imgs | |
focals = scene.get_focals() | |
poses = scene.get_im_poses() | |
pts3d = scene.get_pts3d() | |
confidence_masks = scene.get_masks() | |
# visualize reconstruction | |
scene.show() | |
# find 2D-2D matches between the two images | |
from dust3r.utils.geometry import find_reciprocal_matches, xy_grid | |
pts2d_list, pts3d_list = [], [] | |
for i in range(2): | |
conf_i = confidence_masks[i].cpu().numpy() | |
pts2d_list.append(xy_grid(*imgs[i].shape[:2][::-1])[conf_i]) # imgs[i].shape[:2] = (H, W) | |
pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i]) | |
reciprocal_in_P2, nn2_in_P1, num_matches = find_reciprocal_matches(*pts3d_list) | |
print(f'found {num_matches} matches') | |
matches_im1 = pts2d_list[1][reciprocal_in_P2] | |
matches_im0 = pts2d_list[0][nn2_in_P1][reciprocal_in_P2] | |
# visualize a few matches | |
import numpy as np | |
from matplotlib import pyplot as pl | |
n_viz = 10 | |
match_idx_to_viz = np.round(np.linspace(0, num_matches-1, n_viz)).astype(int) | |
viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz] | |
H0, W0, H1, W1 = *imgs[0].shape[:2], *imgs[1].shape[:2] | |
img0 = np.pad(imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) | |
img1 = np.pad(imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) | |
img = np.concatenate((img0, img1), axis=1) | |
pl.figure() | |
pl.imshow(img) | |
cmap = pl.get_cmap('jet') | |
for i in range(n_viz): | |
(x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T | |
pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False) | |
pl.show(block=True) | |
``` | |
![matching example on croco pair](assets/matching.jpg) | |
## Training | |
In this section, we present a short demonstration to get started with training DUSt3R. | |
At the moment, we didn't release the training datasets, so we're going to download and prepare a subset of [CO3Dv2](https://github.com/facebookresearch/co3d) - [Creative Commons Attribution-NonCommercial 4.0 International](https://github.com/facebookresearch/co3d/blob/main/LICENSE) and launch the training code on it. | |
The demo model will be trained for a few epochs on a very small dataset. | |
It will not be very good. | |
### Demo | |
```bash | |
# download and prepare the co3d subset | |
mkdir -p data/co3d_subset | |
cd data/co3d_subset | |
git clone https://github.com/facebookresearch/co3d | |
cd co3d | |
python3 ./co3d/download_dataset.py --download_folder ../ --single_sequence_subset | |
rm ../*.zip | |
cd ../../.. | |
python3 datasets_preprocess/preprocess_co3d.py --co3d_dir data/co3d_subset --output_dir data/co3d_subset_processed --single_sequence_subset | |
# download the pretrained croco v2 checkpoint | |
mkdir -p checkpoints/ | |
wget https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTLarge_BaseDecoder.pth -P checkpoints/ | |
# the training of dust3r is done in 3 steps. | |
# for this example we'll do fewer epochs, for the actual hyperparameters we used in the paper, see the next section: "Our Hyperparameters" | |
# step 1 - train dust3r for 224 resolution | |
torchrun --nproc_per_node=4 train.py \ | |
--train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop=16, mask_bg='rand', resolution=224, transform=ColorJitter)" \ | |
--test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=224, seed=777)" \ | |
--model "AsymmetricCroCo3DStereo(pos_embed='RoPE100', img_size=(224, 224), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ | |
--train_criterion "ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ | |
--test_criterion "Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ | |
--pretrained "checkpoints/CroCo_V2_ViTLarge_BaseDecoder.pth" \ | |
--lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 16 --accum_iter 1 \ | |
--save_freq 1 --keep_freq 5 --eval_freq 1 \ | |
--output_dir "checkpoints/dust3r_demo_224" | |
# step 2 - train dust3r for 512 resolution | |
torchrun --nproc_per_node=4 train.py \ | |
--train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter)" \ | |
--test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=(512,384), seed=777)" \ | |
--model "AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ | |
--train_criterion "ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ | |
--test_criterion "Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ | |
--pretrained "checkpoints/dust3r_demo_224/checkpoint-best.pth" \ | |
--lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 4 --accum_iter 4 \ | |
--save_freq 1 --keep_freq 5 --eval_freq 1 \ | |
--output_dir "checkpoints/dust3r_demo_512" | |
# step 3 - train dust3r for 512 resolution with dpt | |
torchrun --nproc_per_node=4 train.py \ | |
--train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter)" \ | |
--test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=(512,384), seed=777)" \ | |
--model "AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='dpt', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ | |
--train_criterion "ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ | |
--test_criterion "Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ | |
--pretrained "checkpoints/dust3r_demo_512/checkpoint-best.pth" \ | |
--lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 2 --accum_iter 8 \ | |
--save_freq 1 --keep_freq 5 --eval_freq 1 \ | |
--output_dir "checkpoints/dust3r_demo_512dpt" | |
``` | |
### Our Hyperparameters | |
We didn't release the training datasets, but here are the commands we used for training our models: | |
```bash | |
# NOTE: ROOT path omitted for datasets | |
# 224 linear | |
torchrun --nproc_per_node 4 train.py \ | |
--train_dataset=" + 100_000 @ Habitat512(1_000_000, split='train', aug_crop=16, resolution=224, transform=ColorJitter) + 100_000 @ BlendedMVS(split='train', aug_crop=16, resolution=224, transform=ColorJitter) + 100_000 @ MegaDepthDense(split='train', aug_crop=16, resolution=224, transform=ColorJitter) + 100_000 @ ARKitScenes(aug_crop=256, resolution=224, transform=ColorJitter) + 100_000 @ Co3d_v3(split='train', aug_crop=16, mask_bg='rand', resolution=224, transform=ColorJitter) + 100_000 @ StaticThings3D(aug_crop=256, mask_bg='rand', resolution=224, transform=ColorJitter) + 100_000 @ ScanNetpp(split='train', aug_crop=256, resolution=224, transform=ColorJitter) + 100_000 @ Waymo(aug_crop=128, resolution=224, transform=ColorJitter) " \ | |
--test_dataset=" Habitat512(1_000, split='val', resolution=224, seed=777) + 1_000 @ BlendedMVS(split='val', resolution=224, seed=777) + 1_000 @ MegaDepthDense(split='val', resolution=224, seed=777) + 1_000 @ Co3d_v3(split='test', mask_bg='rand', resolution=224, seed=777) " \ | |
--train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ | |
--test_criterion="Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ | |
--model="AsymmetricCroCo3DStereo(pos_embed='RoPE100', img_size=(224, 224), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ | |
--pretrained="checkpoints/CroCo_V2_ViTLarge_BaseDecoder.pth" \ | |
--lr=0.0001 --min_lr=1e-06 --warmup_epochs=10 --epochs=100 --batch_size=16 --accum_iter=1 \ | |
--save_freq=5 --keep_freq=10 --eval_freq=1 \ | |
--output_dir="checkpoints/dust3r_224" | |
# 512 linear | |
torchrun --nproc_per_node 8 train.py \ | |
--train_dataset=" + 10_000 @ Habitat512(1_000_000, split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ BlendedMVS(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ MegaDepthDense(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ARKitScenes(aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ Co3d_v3(split='train', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ StaticThings3D(aug_crop=256, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ScanNetpp(split='train', aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ Waymo(aug_crop=128, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) " \ | |
--test_dataset=" Habitat512(1_000, split='val', resolution=(512,384), seed=777) + 1_000 @ BlendedMVS(split='val', resolution=(512,384), seed=777) + 1_000 @ MegaDepthDense(split='val', resolution=(512,336), seed=777) + 1_000 @ Co3d_v3(split='test', resolution=(512,384), seed=777) " \ | |
--train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ | |
--test_criterion="Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ | |
--model="AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ | |
--pretrained="checkpoints/dust3r_224/checkpoint-best.pth" \ | |
--lr=0.0001 --min_lr=1e-06 --warmup_epochs=20 --epochs=200 --batch_size=4 --accum_iter=2 \ | |
--save_freq=10 --keep_freq=10 --eval_freq=1 --print_freq=10 \ | |
--output_dir="checkpoints/dust3r_512" | |
# 512 dpt | |
torchrun --nproc_per_node 8 train.py \ | |
--train_dataset=" + 10_000 @ Habitat512(1_000_000, split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ BlendedMVS(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ MegaDepthDense(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ARKitScenes(aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ Co3d_v3(split='train', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ StaticThings3D(aug_crop=256, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ScanNetpp(split='train', aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ Waymo(aug_crop=128, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) " \ | |
--test_dataset=" Habitat512(1_000, split='val', resolution=(512,384), seed=777) + 1_000 @ BlendedMVS(split='val', resolution=(512,384), seed=777) + 1_000 @ MegaDepthDense(split='val', resolution=(512,336), seed=777) + 1_000 @ Co3d_v3(split='test', resolution=(512,384), seed=777) " \ | |
--train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ | |
--test_criterion="Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ | |
--model="AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='dpt', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ | |
--pretrained="checkpoints/dust3r_512/checkpoint-best.pth" \ | |
--lr=0.0001 --min_lr=1e-06 --warmup_epochs=15 --epochs=90 --batch_size=2 --accum_iter=4 \ | |
--save_freq=5 --keep_freq=10 --eval_freq=1 --print_freq=10 \ | |
--output_dir="checkpoints/dust3r_512dpt" | |
``` | |