7B AWQ
Collection
These models are selected for their compatibility with small 12GB memory GPUs.
•
204 items
•
Updated
•
2
It follows the implementation of laserRMT
This repo contains AWQ model files for Common Sense's WestLake 7B v2.
These files were quantised using hardware kindly provided by SolidRusT Networks.
pip install --upgrade autoawq autoawq-kernels
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/WestLake-7B-v2-laser-AWQ"
system_message = "Welcome to WestLake. You are here to help users with any questions they may have."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Also working with Basic Mistral format:
<|system|>
</s>
<|user|>
{prompt}</s>
<|assistant|>
Base model
senseable/WestLake-7B-v2