FilmTitle-Beit-GPT2 / README.md
snzhang's picture
Update README.md
666ada5
|
raw
history blame
1.69 kB
---
license: apache-2.0
language:
- zh
pipeline_tag: image-to-text
widget:
- src: >-
https://huggingface.co/snzhang/FilmTitle-Beit-GPT2/resolve/main/SpiderMan.jpg
example_title: SpiderMan
- src: >-
https://huggingface.co/snzhang/FilmTitle-Beit-GPT2/resolve/main/BorntoFly.jpg
example_title: Born to Fly
---
# Image Caption Model
## Model description
The model is used to generate the Chinese title of a random movie post. It is based on the [BEiT](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) and [GPT2](https://huggingface.co/IDEA-CCNL/Wenzhong-GPT2-110M).
## Training Data
The training data contains 5043 movie posts and their corresponding Chinese title which are collected by [Movie-Title-Post](https://huggingface.co/datasets/snzhang/Movie-Title-Post)
## How to use
```Python
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
from PIL import Image
pretrained = "snzhang/FilmTitle-Beit-GPT2"
model = VisionEncoderDecoderModel.from_pretrained(pretrained)
feature_extractor = ViTFeatureExtractor.from_pretrained(pretrained)
tokenizer = AutoTokenizer.from_pretrained(pretrained)
image_path = "your image path"
image = Image.open(image_path)
if image.mode != "RGB":
image = image.convert("RGB")
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
print(preds)
```
## More Details
You can get more training details in [FilmTitle-Beit-GPT2](https://github.com/h7nian/FilmTitle-Beit-GPT2)