hanasim's picture
End of training
ce50910 verified
metadata
language:
  - hi
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Breeze DSW Hindi - base
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 hi
          type: mozilla-foundation/common_voice_16_0
          config: hi
          split: test
          args: hi
        metrics:
          - name: Wer
            type: wer
            value: 28.50294181738941

Breeze DSW Hindi - base

This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_16_0 hi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5205
  • Wer: 28.5029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.553 0.1 100 0.6445 39.4988
0.3683 1.08 200 0.5342 33.0660
0.2855 2.07 300 0.4983 31.4251
0.2233 3.06 400 0.4868 30.1547
0.1832 4.04 500 0.4783 28.9540
0.1431 5.03 600 0.4902 29.1828
0.0972 6.01 700 0.5049 28.6380
0.0715 6.11 800 0.5205 28.5029
0.0579 7.09 900 0.5366 28.9475
0.0519 8.08 1000 0.5381 28.7949

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0