Edit model card

roberta-base-sst-2-64-13

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0411
  • Accuracy: 0.8672

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.6951 0.5
No log 2.0 8 0.6951 0.5
0.6962 3.0 12 0.6951 0.5
0.6962 4.0 16 0.6950 0.5
0.7017 5.0 20 0.6949 0.5
0.7017 6.0 24 0.6949 0.5
0.7017 7.0 28 0.6947 0.5
0.6966 8.0 32 0.6946 0.5
0.6966 9.0 36 0.6945 0.5
0.6927 10.0 40 0.6944 0.5
0.6927 11.0 44 0.6943 0.5
0.6927 12.0 48 0.6941 0.5
0.6961 13.0 52 0.6940 0.5
0.6961 14.0 56 0.6939 0.5
0.6875 15.0 60 0.6938 0.5
0.6875 16.0 64 0.6936 0.5
0.6875 17.0 68 0.6934 0.5
0.6935 18.0 72 0.6932 0.5
0.6935 19.0 76 0.6929 0.5
0.6948 20.0 80 0.6927 0.5
0.6948 21.0 84 0.6924 0.5
0.6948 22.0 88 0.6922 0.5
0.6906 23.0 92 0.6920 0.5
0.6906 24.0 96 0.6917 0.5
0.691 25.0 100 0.6913 0.5
0.691 26.0 104 0.6909 0.5
0.691 27.0 108 0.6904 0.5
0.6855 28.0 112 0.6899 0.5
0.6855 29.0 116 0.6891 0.5
0.6858 30.0 120 0.6882 0.5234
0.6858 31.0 124 0.6870 0.5156
0.6858 32.0 128 0.6852 0.6016
0.6764 33.0 132 0.6825 0.6562
0.6764 34.0 136 0.6782 0.7266
0.6616 35.0 140 0.6703 0.7969
0.6616 36.0 144 0.6545 0.8281
0.6616 37.0 148 0.6245 0.8516
0.6082 38.0 152 0.5651 0.8594
0.6082 39.0 156 0.4835 0.875
0.4548 40.0 160 0.4109 0.9062
0.4548 41.0 164 0.3606 0.875
0.4548 42.0 168 0.3454 0.8594
0.2218 43.0 172 0.3403 0.8594
0.2218 44.0 176 0.3537 0.8828
0.0892 45.0 180 0.4646 0.8516
0.0892 46.0 184 0.4402 0.875
0.0892 47.0 188 0.4719 0.8828
0.0254 48.0 192 0.5172 0.8828
0.0254 49.0 196 0.5613 0.8828
0.0105 50.0 200 0.6035 0.875
0.0105 51.0 204 0.6341 0.875
0.0105 52.0 208 0.6591 0.875
0.006 53.0 212 0.6804 0.875
0.006 54.0 216 0.6935 0.875
0.0041 55.0 220 0.7167 0.875
0.0041 56.0 224 0.7315 0.875
0.0041 57.0 228 0.7464 0.875
0.0032 58.0 232 0.7560 0.8594
0.0032 59.0 236 0.8753 0.8516
0.0098 60.0 240 0.9437 0.8438
0.0098 61.0 244 0.7740 0.8672
0.0098 62.0 248 0.7258 0.8828
0.0094 63.0 252 0.7815 0.8594
0.0094 64.0 256 0.7836 0.8516
0.0021 65.0 260 0.7854 0.8516
0.0021 66.0 264 0.7817 0.8594
0.0021 67.0 268 0.7698 0.8828
0.0019 68.0 272 0.7848 0.875
0.0019 69.0 276 0.7895 0.8828
0.0017 70.0 280 0.7971 0.8828
0.0017 71.0 284 0.8038 0.8828
0.0017 72.0 288 0.8091 0.8828
0.0014 73.0 292 0.8139 0.8828
0.0014 74.0 296 0.8183 0.8828
0.0014 75.0 300 0.8223 0.8828
0.0014 76.0 304 0.8274 0.8828
0.0014 77.0 308 0.8357 0.875
0.0012 78.0 312 0.8436 0.875
0.0012 79.0 316 0.8523 0.875
0.0012 80.0 320 0.8591 0.875
0.0012 81.0 324 0.8653 0.875
0.0012 82.0 328 0.8708 0.875
0.001 83.0 332 0.8271 0.8594
0.001 84.0 336 1.0450 0.8438
0.0012 85.0 340 1.1347 0.8281
0.0012 86.0 344 1.1696 0.8281
0.0012 87.0 348 0.8631 0.8672
0.0137 88.0 352 1.1491 0.8359
0.0137 89.0 356 1.0635 0.8516
0.0012 90.0 360 0.9027 0.875
0.0012 91.0 364 0.9503 0.8594
0.0012 92.0 368 1.0398 0.8281
0.0185 93.0 372 0.9044 0.875
0.0185 94.0 376 1.0978 0.8438
0.0009 95.0 380 0.9955 0.8672
0.0009 96.0 384 0.9313 0.875
0.0009 97.0 388 0.9295 0.875
0.0008 98.0 392 1.0927 0.8516
0.0008 99.0 396 0.9251 0.875
0.0007 100.0 400 0.9454 0.8594
0.0007 101.0 404 1.0023 0.8516
0.0007 102.0 408 1.0098 0.8516
0.0006 103.0 412 0.9944 0.8594
0.0006 104.0 416 0.9832 0.8516
0.0006 105.0 420 0.9090 0.8828
0.0006 106.0 424 1.2248 0.8359
0.0006 107.0 428 0.8722 0.8906
0.0197 108.0 432 0.8764 0.8828
0.0197 109.0 436 0.9771 0.875
0.0005 110.0 440 0.9871 0.875
0.0005 111.0 444 0.9235 0.875
0.0005 112.0 448 0.8418 0.8828
0.0005 113.0 452 0.8653 0.8906
0.0005 114.0 456 0.9098 0.8828
0.0005 115.0 460 0.9285 0.8828
0.0005 116.0 464 0.9443 0.875
0.0005 117.0 468 0.9584 0.8672
0.0005 118.0 472 0.9704 0.8672
0.0005 119.0 476 0.9805 0.8672
0.0004 120.0 480 0.9904 0.8672
0.0004 121.0 484 0.9920 0.8672
0.0004 122.0 488 0.9927 0.8672
0.0004 123.0 492 1.0015 0.8672
0.0004 124.0 496 1.0181 0.8672
0.0004 125.0 500 1.0289 0.8672
0.0004 126.0 504 1.0374 0.8672
0.0004 127.0 508 1.0408 0.8672
0.0004 128.0 512 1.0432 0.8672
0.0004 129.0 516 1.0472 0.8672
0.0003 130.0 520 1.0489 0.8672
0.0003 131.0 524 1.0497 0.8672
0.0003 132.0 528 1.0496 0.8672
0.0003 133.0 532 1.0497 0.8672
0.0003 134.0 536 1.0496 0.8672
0.0003 135.0 540 1.0492 0.8672
0.0003 136.0 544 1.0491 0.8672
0.0003 137.0 548 1.0482 0.8672
0.0003 138.0 552 1.0471 0.8672
0.0003 139.0 556 1.0456 0.8672
0.0003 140.0 560 1.0432 0.8672
0.0003 141.0 564 1.0411 0.8672
0.0003 142.0 568 1.0399 0.8672
0.0003 143.0 572 1.0398 0.8672
0.0003 144.0 576 1.0396 0.8672
0.0003 145.0 580 1.0393 0.8672
0.0003 146.0 584 1.0396 0.8672
0.0003 147.0 588 1.0400 0.8672
0.0003 148.0 592 1.0405 0.8672
0.0003 149.0 596 1.0409 0.8672
0.0003 150.0 600 1.0411 0.8672

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/roberta-base-sst-2-64-13

Finetuned
(1283)
this model