|
--- |
|
language: |
|
- bn |
|
- en |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
--- |
|
# Bangla Sentence Transformer |
|
|
|
Sentence Transformer is a cutting-edge natural language processing (NLP) model that is capable of encoding and transforming sentences into high-dimensional embeddings. With this technology, we can unlock powerful insights and applications in various fields like text classification, information retrieval, semantic search, and more. |
|
|
|
This model is finetuned from ```stsb-xlm-r-multilingual``` |
|
It's now available on Hugging Face! 🎉🎉 |
|
|
|
## Install |
|
## Usage (Sentence-Transformers) |
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?'] |
|
|
|
model = SentenceTransformer('shihab17/bangla-sentence-transformer') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('shihab17/bangla-sentence-transformer') |
|
model = AutoModel.from_pretrained('shihab17/bangla-sentence-transformer') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## How to get sentence similarity |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import pytorch_cos_sim |
|
|
|
|
|
transformer = SentenceTransformer('shihab17/bangla-sentence-transformer') |
|
|
|
sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?'] |
|
|
|
sentences_embeddings = transformer.encode(sentences) |
|
|
|
for i in range(len(sentences)): |
|
for j in range(i, len(sentences)): |
|
sen_1 = sentences[i] |
|
sen_2 = sentences[j] |
|
sim_score = float(pytorch_cos_sim(sentences_embeddings[i], sentences_embeddings[j])) |
|
print(sen_1, '----->', sen_2, sim_score) |
|
``` |
|
|
|
## Best MSE: 7.57528096437454 |