Edit model card

llama3-8B-slerp-biomed-chat-chinese

llama3-8B-slerp-biomed-chat-chinese is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: shanchen/llama3-8B-slerp-med-chinese
        layer_range: [0,32]
      - model: shenzhi-wang/Llama3-8B-Chinese-Chat
        layer_range: [0,32]
merge_method: slerp
base_model: shenzhi-wang/Llama3-8B-Chinese-Chat
parameters:
  t:
    - filter: self_attn
      value: [0.3, 0.5, 0.5, 0.7, 1]
    - filter: mlp
      value: [1, 0.7, 0.5, 0.5, 0.3]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "shanchen/llama3-8B-slerp-biomed-chat-chinese"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id, torch_dtype="auto", device_map="auto"
)

messages = [
    {"role": "user", "content": "Can you speak Japanese?"},
]

input_ids = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)

outputs = model.generate(
    input_ids,
    max_new_tokens=192 max#8192,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
Downloads last month
2,533
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shanchen/llama3-8B-slerp-biomed-chat-chinese

Spaces using shanchen/llama3-8B-slerp-biomed-chat-chinese 5